Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77835
Campo DC Valoridioma
dc.contributor.authorDel Pozo Baños, Marcosen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.contributor.authorLoxton, Kateen_US
dc.contributor.authorPetkov, Nicolaien_US
dc.contributor.authorBerridge, Damonen_US
dc.contributor.authorLloyd, Keithen_US
dc.contributor.authorJones, Carolineen_US
dc.contributor.authorSpencer, Sarahen_US
dc.contributor.authorJohn, Annen_US
dc.date.accessioned2021-02-23T21:29:11Z-
dc.date.available2021-02-23T21:29:11Z-
dc.date.issued2018en_US
dc.identifier.issn2399-4908en_US
dc.identifier.urihttp://hdl.handle.net/10553/77835-
dc.description.abstractInformation is increasingly digital, creating opportunities to respond to pressing issues about human populations in near real time using linked datasets that are large, complex, and diverse. The potential social and individual benefits that can come from data-intensive science are large, but raise challenges of balancing individual privacy and the public good, building appropriate socio-technical systems to support data-intensive science, and determining whether defining a new field of inquiry might help move those collective interests and activities forward. A combination of expert engagement, literature review, and iterative conversations led to our conclusion that defining the field of Population Data Science (challenge 3) will help address the other two challenges as well. We define Population Data Science succinctly as the science of data about people and note that it is related to but distinct from the fields of data science and informatics. A broader definition names four characteristics of: data use for positive impact on citizens and society; bringing together and analyzing data from multiple sources; finding population-level insights; and developing safe, privacy-sensitive and ethical infrastructure to support research. One implication of these characteristics is that few people possess all of the requisite knowledge and skills of Population Data Science, so this is by nature a multi-disciplinary field. Other implications include the need to advance various aspects of science, such as data linkage technology, various forms of analytics, and methods of public engagement. These implications are the beginnings of a research agenda for Population Data Science, which if approached as a collective field, can catalyze significant advances in our understanding of trends in society, health, and human behavior.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Population Data Scienceen_US
dc.sourceInternational Journal of Population Data Science [ISSN 2399-4908], v. 3 (4)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleCombining Artificial Neural Networks, Routine Health Records and Suicide Risk Estimationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.23889/ijpds.v3i4.774en_US
dc.identifier.issue4-
dc.relation.volume3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Combining Artificial Neural Networks
Adobe PDF (208,8 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.