Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77546
Campo DC Valoridioma
dc.contributor.authorCarmona Duarte, María Cristinaen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorGómez-Vilda, Pedroen_US
dc.contributor.authorVan Gemmert, Arend W. A.en_US
dc.contributor.authorPlamondon, Réjeanen_US
dc.date.accessioned2021-02-04T17:59:07Z-
dc.date.available2021-02-04T17:59:07Z-
dc.date.issued2020en_US
dc.identifier.isbn978-981-12-2682-3en_US
dc.identifier.issn1793-0839-
dc.identifier.urihttp://hdl.handle.net/10553/77546-
dc.description.abstractParkinson’s disease is manifested as well in handwriting as in voice. Different procedures have been used in previous research to estimate the dysfunctions of the illness in voice and handwriting. This paper proposes one parameter to evaluate the influence of the illness on both voice and handwriting as the symptoms affecting these two behaviors have a common origin. Specifically, the parameter proposed is based on the Kinematic Theory of rapid human movements. It allows to quantify the deficits caused by Parkinson’s disease in handwriting and voice. The velocity profile obtained to characterize voice between the first and second formant is computed by a spatio-temporal approximation. In handwriting, the velocity profile is obtained from the sampled positions of the pen on a digitizer tablet. Once the velocity profile is derived, it is transformed to fit into the lognormal model in which similarities between voice and handwriting have been found for the performance of these tasks by Parkinson’s patients. The experiments with different databases of voice and handwriting recorded from different patients in different labs display positive results pointing out a common parameter that is affected by the two types of communication modalities.en_US
dc.languageengen_US
dc.publisherWorld Scientific Publishingen_US
dc.sourceThe Lognormality Principle and its Applications in e-Security, e-Learning and e-Health / Réjean Plamondon; Angelo Marcelli; Miguel Ángel Ferrer (Eds.), p. 161-175en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleEvaluating Parkinson’s Disease in Voice and Handwriting Using the Same Methodologyen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBookParten_US
dc.identifier.doi10.1142/9789811226830_0007en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.identifier.supplement1793-0839-
dc.identifier.supplement1793-0839-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.spiqQ2
dc.description.spiqQ2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameCarmona Duarte, María Cristina-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Capítulo de libro
Vista resumida

Visitas

119
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.