Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77331
Título: Curve‐based classification approach for hyperspectral dermatologic data processing
Autores/as: Uteng, Stig
Quevedo Gutiérrez, Eduardo Gregorio 
Marrero Callicó, Gustavo Iván 
Castaño González, Irene
Carretero Hernández, Gregorio
Almeida Martín, Pablo
Garcia del Toro, Aday
Hernández Santana, Javier A.
Godtliebsen, Fred
Clasificación UNESCO: 3314 Tecnología médica
320106 Dermatología
Palabras clave: Hyperspectral
Curve fit
Statistical discrimination
Melanoma
Benign, et al.
Fecha de publicación: 2021
Publicación seriada: Sensors (Switzerland) 
Resumen: This paper shows new contributions in the detection of skin cancer, where we present the use of a customized hyperspectral system that captures images in the spectral range from 450 to 950 nm. By choosing a 7 × 7 sub-image of each channel in the hyperspectral image (HSI) and then taking the mean and standard deviation of these sub-images, we were able to make fits of the resulting curves. These fitted curves had certain characteristics, which then served as a basis of classification. The most distinct fit was for the melanoma pigmented skin lesions (PSLs), which is also the most aggressive malignant cancer. Furthermore, we were able to classify the other PSLs in malignant and benign classes. This gives us a rather complete classification method for PSLs with a novel perspective of the classification procedure by exploiting the variability of each channel in the HSI.
URI: http://hdl.handle.net/10553/77331
ISSN: 1424-8220
DOI: 10.3390/s21030680
Fuente: Sensors (Switzerland) [ISSN 1424-8220], v. 21 (3), p. 1-13
Colección:Artículos
miniatura
Adobe PDF (1,46 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 08-dic-2024

Visitas

199
actualizado el 24-ago-2024

Descargas

126
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.