Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77082
Título: Hyperspectral imaging for glioblastoma surgery: Improving tumor identification using a deep spectral-spatial approach
Autores/as: Manni, Francesca
van der Sommen, Fons
Fabelo, Himar 
Zinger, Svitlana
Shan, Caifeng
Edström, Erik
Elmi-Terander, Adrian
Ortega, Samuel 
Callico, Gustavo Marrero 
de With, Peter H.N.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Ant-Colony-Based Band Selection
Brain Imaging
Deep Learning
Glioblastoma
Hyperspectral Imaging, et al.
Fecha de publicación: 2020
Publicación seriada: Sensors (Switzerland) 
Resumen: The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D–2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D–2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.
URI: http://hdl.handle.net/10553/77082
ISSN: 1424-8220
DOI: 10.3390/s20236955
Fuente: Sensors (Switzerland)[ISSN 1424-8220],v. 20 (23), p. 1-20, (Diciembre 2020)
Colección:Artículos
miniatura
Unknown (17,83 MB)
Vista completa

Citas SCOPUSTM   

31
actualizado el 14-abr-2024

Visitas

89
actualizado el 23-mar-2024

Descargas

55
actualizado el 23-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.