Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77072
Título: | Hyperspectral Imaging for Major Neurocognitive Disorder Detection in Plasma Samples | Autores/as: | León Martín, Sonia Raquel Martínez Vega, Beatriz Fabelo Gómez, Himar Antonio Ortega Sarmiento, Samuel Marrero Callicó, Gustavo Iván Balea Fernández, Francisco Javier Bilbao Sieyro, Cristina |
Clasificación UNESCO: | 32 Ciencias médicas 320507 Neurología 320711 Neuropatología |
Palabras clave: | Hyperspectral Imaging K-Nearest Neighborhood Neurocognitive Disorders Random Forest Supervised Learning, et al. |
Fecha de publicación: | 2020 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 35th Conference on Design of Circuits and Integrated Systems - DCIS 2020 | Resumen: | Neurocognitive disorders (NCD) affect over 50 million people globally. The detection biomarkers using brain imaging or cerebrospinal fluid are expensive procedures. Blood-based biomarkers such as plasma or serum present a cost-effective alternative. The work presented in this paper is focused on the use of hyperspectral (HS) imaging (HSI) to classify plasma samples in order to discriminate between patients with major NCD and healthy control subjects. HS images of plasma samples were obtained using a SWIR (Short-Wave Infrared) camera able to capture 273 bands within the 900-2,500 nm spectral range. A preliminary HSI database was obtained with 20 major NCD samples and 20 control samples. This data was segmented and classified using pixel-wise supervised classification algorithms, achieving 75% sensitivity and 100% specificity results with the best classifier in the test set. | URI: | http://hdl.handle.net/10553/77072 | ISBN: | 9781728191324 | DOI: | 10.1109/DCIS51330.2020.9268625 | Fuente: | 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS) |
Colección: | Actas de congresos |
Visitas
135
actualizado el 07-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.