Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76664
Campo DC Valoridioma
dc.contributor.authorSalazar A, Daniel E.en_US
dc.contributor.authorRocco S, Claudio M.en_US
dc.date.accessioned2020-12-14T21:50:28Z-
dc.date.available2020-12-14T21:50:28Z-
dc.date.issued2007en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/76664-
dc.description.abstractThis paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue]] to obtain a robust system design. The approach based on the use of evolutionary algorithms and interval arithmetic finds the maximum-volume inner box (MIB) or the maximal ranges of variation for each variable that preserve pre-specified design/performance requirements. The original single-objective formulation considers the definition of a MIB around a specified centroid (case 1), or around an unspecified centroid (case 2). In this paper, both cases were successfully modified and solved as multiple-objective (MO) problems, showing the advantages of MO formulations in a design-selection decision framework. Special attention is devoted to the unspecified centre MO problem where the computational efficiency could be a critical issue. In that sense, a new procedure based on the "percentage representation" is proposed. This approach reduces drastically the computational burden, extending the possibilities of use of robust design.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering and System Safety [ISSN 0951-8320], v. 92 (6), p. 697-706, (Junio 2007)en_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherMOEAen_US
dc.subject.otherMultiple-objective optimisationen_US
dc.subject.otherPercentage representationen_US
dc.subject.otherRobust designen_US
dc.titleSolving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability applicationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2006.03.003en_US
dc.identifier.scopus33846458246-
dc.identifier.isi000245541000002-
dc.contributor.authorscopusid56240751500-
dc.contributor.authorscopusid7004508307-
dc.identifier.eissn1879-0836-
dc.description.lastpage706en_US
dc.identifier.issue6-
dc.description.firstpage697en_US
dc.relation.volume92en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1400577-
dc.contributor.daisngid771425-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Salazar, DE-
dc.contributor.wosstandardWOS:Rocco, CM-
dc.date.coverdateJunio 2007en_US
dc.identifier.ulpgcen_US
dc.description.jcr1,004
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

44
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

38
actualizado el 15-dic-2024

Visitas

169
actualizado el 16-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.