Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76492
Campo DC Valoridioma
dc.contributor.authorHuyben, Daviden_US
dc.contributor.authorRimoldi, Simonaen_US
dc.contributor.authorCeccotti, Chiaraen_US
dc.contributor.authorMontero Vítores, Danielen_US
dc.contributor.authorBetancor, Monicaen_US
dc.contributor.authorIannini, Federicaen_US
dc.contributor.authorTerova, Gencianaen_US
dc.date.accessioned2020-12-10T09:44:36Z-
dc.date.available2020-12-10T09:44:36Z-
dc.date.issued2020en_US
dc.identifier.issn2167-8359en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/76492-
dc.description.abstractBackground In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). Methods A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ± 0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. Results and Conclusions The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.en_US
dc.languageengen_US
dc.relationAQUAculture infrastructures for EXCELlence in European fish research towards 2020en_US
dc.relationGenomic and nutritional innovations for genetically superior farmed fish to improve efficiency in European aquacultureen_US
dc.relation.ispartofPeerJen_US
dc.sourcePeerJ [ISSN 2167-8359], n. 8:e10430 (Diciembre 2020)en_US
dc.subject310502 Pisciculturaen_US
dc.subject.otherAquacultureen_US
dc.subject.otherFish Oilen_US
dc.subject.otherGut Microbiotaen_US
dc.subject.otherLipiden_US
dc.subject.otherMetagenomeen_US
dc.subject.otherNext-Generation Sequencingen_US
dc.subject.otherOmega-3en_US
dc.subject.otherPicrusten_US
dc.titleEffect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead Sea bream (Sparus aurata)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.7717/peerj.10430en_US
dc.identifier.scopus85097609006-
dc.contributor.authorscopusid57191290242-
dc.contributor.authorscopusid6505757799-
dc.contributor.authorscopusid57190956167-
dc.contributor.authorscopusid35605929400-
dc.contributor.authorscopusid26431740800-
dc.contributor.authorscopusid57208208071-
dc.contributor.authorscopusid6602956364-
dc.identifier.eissn2167-8359-
dc.relation.volume8en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages30en_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,927
dc.description.jcr2,984
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorAfonso López, Juan Manuel-
crisitem.project.principalinvestigatorMontero Vítores, Daniel-
crisitem.author.deptGIR Grupo de Investigación en Acuicultura-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-4358-2157-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameMontero Vítores, Daniel-
Colección:Artículos
miniatura
PDF
Adobe PDF (911,44 kB)
Vista resumida

Citas SCOPUSTM   

22
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

22
actualizado el 10-nov-2024

Visitas

132
actualizado el 06-ene-2024

Descargas

86
actualizado el 06-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.