Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/75898
Título: | Clasificación de imágenes dermatológicas hiperespectrales para la detección de melanomas usando técnicas de aprendizaje supervisado y no supervisado | Autores/as: | Melián González, Verónica | Director/a : | Marrero Callicó, Gustavo Iván Fabelo Gomez, Himar |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Fecha de publicación: | 2020 | Resumen: | La aplicación de las imágenes hiperespectrales (HSI) en el campo de la medicina ha supuesto un gran avance en la investigación, puesto que se trata de una técnica no invasiva, relativamente sencilla y económica actualmente, que proporciona una gran cantidad de información en el rango electromagnético, dentro del espectro visible y en el infrarrojo, sobre el tejido de una lesión para poder realizar un diagnóstico más preciso sobre la enfermedad en cuestión. Este Trabajo de Fin de Grado (TFG) tiene como principal objetivo generar una base de datos de imágenes hiperespectrales de lesiones de piel, con el fin de detectar cáncer de piel mediante el uso de algoritmos de clasificación supervisada como son las Support Vector Machines (SVMs). Para ello, se utilizará una cámara dermatológica hiperespectral diseñada en la división de Diseño de Sistemas Integrados (DSI) del Instituto Universitario de Microelectrónica Aplicada (IUMA) para las capturas de las imágenes hiperespectrales de lesiones de piel, así como el software MATLAB® para desarrollar el algoritmo necesario para la clasificación y el diagnóstico automático de las imágenes capturadas. Este sistema podría servir en el futuro como herramienta de ayuda al diagnóstico durante la práctica clínica en consultas dermatológicas. En primer lugar, se realizará un estudio del estado del arte donde se observan los tipos de lesiones malignas que se producen en la piel. También se indica cómo son las características que hay que tener en cuenta a la hora de realizar un diagnóstico de cáncer de piel, especialmente para lesiones tipo melanoma. Por otro lado, se describen los tipos de cámaras que se utilizan actualmente en dermatología, así como los tipos de cámaras hiperespectrales existentes en el mercado. Finalmente, se explica lo que son las imágenes hiperespectrales, tanto el concepto general como el uso que se hace de estas imágenes dentro de la rama de la medicina. Seguidamente, se detalla el sistema de adquisición utilizado en el presente TFG, además de la base de datos generada en el presente proyecto. En el sistema de adquisición se trata tanto la parte hardware como la parte software, puesto que ambas son importantes para el desarrollo del proyecto. Se hace una explicación de las clases establecidas para la clasificación y la cantidad de datos recogidos para el desarrollo del proyecto. A continuación, una vez se explican las partes del sistema de adquisición, se habla del algoritmo de clasificación supervisada utilizado para este proyecto. Se explican todos los pasos realizados, que abarcan el etiquetado de las imágenes, su pre-procesado y el desarrollo del algoritmo de clasificación supervisada. Dentro del algoritmo se explican los parámetros utilizados para la función de MATLAB utilizada en el TFG. Por otro lado, se hace una breve definición de las métricas que hay que evaluar para poder entender mejor los resultados obtenidos. Por último, se estudian y se comparan los resultados obtenidos por el algoritmo de clasificación, donde se demuestra que la imagen hiperespectral tiene un alto potencial para convertirse en una herramienta útil para la ayuda al diagnóstico dermatológico durante la práctica clínica rutinaria. | Departamento: | Departamento de Ingeniería Electrónica Y Automática | Facultad: | Escuela de Ingeniería de Telecomunicación y Electrónica | Titulación: | Grado en Ingeniería en Tecnologías de la Telecomunicación | URI: | http://hdl.handle.net/10553/75898 |
Colección: | Trabajo final de grado Restringido ULPGC |
En el caso de que no encuentre el documento puede ser debido a que el centro o las/os autoras/es no autorizan su publicación. Si tiene verdadero interés en el contenido del mismo, puede dirigirse al director/a o directores/as del trabajo cuyos datos encontrará más arriba.
Vista completaVisitas
471
actualizado el 28-sep-2024
Descargas
124
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.