Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/75811
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Benítez, Domingo | en_US |
dc.contributor.author | Montero, Gustavo | en_US |
dc.contributor.author | Rodríguez, Eduardo | en_US |
dc.contributor.author | Greiner, David | en_US |
dc.contributor.author | Oliver, Albert | en_US |
dc.contributor.author | González, Luis | en_US |
dc.contributor.author | Montenegro, Rafael | en_US |
dc.date.accessioned | 2020-11-23T09:05:52Z | - |
dc.date.available | 2020-11-23T09:05:52Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 2227-7390 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/75811 | - |
dc.description.abstract | A novel phenomenological epidemic model is proposed to characterize the state of infectious diseases and predict their behaviors. This model is given by a new stochastic partial differential equation that is derived from foundations of statistical physics. The analytical solution of this equation describes the spatio-temporal evolution of a Gaussian probability density function. Our proposal can be applied to several epidemic variables such as infected, deaths, or admitted-to-the-Intensive Care Unit (ICU). To measure model performance, we quantify the error of the model fit to real time-series datasets and generate forecasts for all the phases of the COVID-19, Ebola, and Zika epidemics. All parameters and model uncertainties are numerically quantified. The new model is compared with other phenomenological models such as Logistic Grow, Original, and Generalized Richards Growth models. When the models are used to describe epidemic trajectories that register infected individuals, this comparison shows that the median RMSE error and standard deviation of the residuals of the new model fit to the data are lower than the best of these growing models by, on average, 19.6% and 35.7%, respectively. Using three forecasting experiments for the COVID-19 outbreak, the median RMSE error and standard deviation of residuals are improved by the performance of our model, on average by 31.0% and 27.9%, respectively, concerning the best performance of the growth models. | en_US |
dc.language | eng | en_US |
dc.relation | COVID | en_US |
dc.relation.ispartof | Mathematics | en_US |
dc.source | Mathematics [EISSN 2227-7390], v. 8 (11), p. 1-22, (Noviembre 2020) | en_US |
dc.subject | 120903 Análisis de datos | en_US |
dc.subject | 120914 Técnicas de predicción estadística | en_US |
dc.subject | 220510 Mecánica estadística | en_US |
dc.subject.other | Forecasts | en_US |
dc.subject.other | Model fitting performance | en_US |
dc.subject.other | Parameter estimation | en_US |
dc.subject.other | Phenomenological epidemic models | en_US |
dc.subject.other | Stochastic epidemic models | en_US |
dc.title | A phenomenological epidemic model based on the spatio-temporal evolution of a gaussian probability density function | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/math8112000 | en_US |
dc.identifier.scopus | 85096011096 | - |
dc.contributor.authorscopusid | 7003286582 | - |
dc.contributor.authorscopusid | 56256002000 | - |
dc.contributor.authorscopusid | 7401953314 | - |
dc.contributor.authorscopusid | 56268125800 | - |
dc.contributor.authorscopusid | 57215071329 | - |
dc.contributor.authorscopusid | 35248076500 | - |
dc.contributor.authorscopusid | 35617533100 | - |
dc.identifier.eissn | 2227-7390 | - |
dc.description.lastpage | 22 | en_US |
dc.identifier.issue | 11 | - |
dc.description.firstpage | 1 | en_US |
dc.relation.volume | 8 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Noviembre 2020 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,495 | |
dc.description.jcr | 2,258 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Computación Evolutiva y Aplicaciones | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Ingeniería Civil | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0003-2952-2972 | - |
crisitem.author.orcid | 0000-0001-5641-442X | - |
crisitem.author.orcid | 0000-0002-2701-2971 | - |
crisitem.author.orcid | 0000-0002-4132-7144 | - |
crisitem.author.orcid | 0000-0002-3783-8670 | - |
crisitem.author.orcid | 0000-0002-4164-457X | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Benítez Díaz, Domingo Juan | - |
crisitem.author.fullName | Montero García, Gustavo | - |
crisitem.author.fullName | Rodríguez Barrera, Eduardo Miguel | - |
crisitem.author.fullName | Greiner Sánchez, David Juan | - |
crisitem.author.fullName | Oliver Serra, Albert | - |
crisitem.author.fullName | González Sánchez, Luis | - |
crisitem.author.fullName | Montenegro Armas, Rafael | - |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 15-dic-2024
Visitas
195
actualizado el 14-dic-2024
Descargas
204
actualizado el 14-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.