Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/75675
Title: | An ensemble approach for the diagnosis of cognitive decline with missing data | Authors: | Garcia Baez, Patricio Fernández Viadero,Carlos Regidor García,José Suarez Araujo, Carmen Paz |
UNESCO Clasification: | 120304 Inteligencia artificial 2490 Neurociencias |
Keywords: | Disease Cognitive decline Dementia Diagnosis Alzheimer's disease, et al |
Issue Date: | 2008 | Project: | Hacia Un Prototipo de Sistema Computacional de Inteligente de Ayuda Al Diagnóstico Del Deterioro Cognitivo Leve (Dcl) y de la Enfermedad de Alzheimer y Otras Demencias. | Journal: | Lecture Notes in Computer Science | Conference: | 3rd International Workshop on Hybrid Artificial Intelligence Systems | Abstract: | This work applies new techniques of automatic learning to diagnose neuro decline processes usually related to aging. Early detection of cognitive decline (CD) is an advisable practice under multiple perspectives. A study of neuropsychological tests from 267 consultations on 30 patients by the Alzheimer's Patient Association of Gran Canaria is carried out. We designed neural computational CD diagnosis systems, using a multi-net and ensemble structure that is applied to the treatment of missing data present in consultations. The results show significant improvements over simple classifiers. These systems would allow applying policies of early detection of dementias in primary care centers where specialized professionals are not present. | URI: | http://hdl.handle.net/10553/75675 | ISBN: | 978-3-540-87655-7 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-540-87656-4_44 | Source: | Hybrid Artificial Intelligence Systems [ISSN 0302-9743], v. 5271, p. 353-360, (2008) |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
6
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
2
checked on Feb 25, 2024
Page view(s)
89
checked on Aug 3, 2024
Download(s)
146
checked on Aug 3, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.