Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75603
Campo DC Valoridioma
dc.contributor.authorPohl, Annaen_US
dc.contributor.authorBerger, Florianen_US
dc.contributor.authorSullan, Ruby M. A.en_US
dc.contributor.authorValverde Tercedor, María Del Carmenen_US
dc.contributor.authorFreindl, Kingaen_US
dc.contributor.authorSpiridis, Nikaen_US
dc.contributor.authorLefevre, Christopher T.en_US
dc.contributor.authorMenguy, Nicolasen_US
dc.contributor.authorKlumpp, Stefanen_US
dc.contributor.authorBlank, Kerstin G.en_US
dc.contributor.authorFaivre, Damienen_US
dc.date.accessioned2020-11-17T07:52:10Z-
dc.date.available2020-11-17T07:52:10Z-
dc.date.issued2019en_US
dc.identifier.issn1530-6984en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75603-
dc.description.abstractProtein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling, and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nanoparticles in magnetotactic bacteria has become an excellent model system. Most interestingly, nanoparticle morphologies have been discovered that defy crystallographic rules (e.g., in the species Desulfamplus magnetovallimortis strain BW-1). In certain conditions, this strain mineralizes bullet-shaped magnetite nanoparticles, which exhibit defined (111) crystal faces and are elongated along the [100] direction. We hypothesize that surface-specific protein interactions break the nanoparticle symmetry, inhibiting the growth of certain crystal faces and thereby favoring the growth of others. Screening the genome of BW-1, we identified Mad10 (Magnetosome-associated deep-branching) as a potential magnetite-binding protein. Using atomic force microscope (AFM)-based single-molecule force spectroscopy, we show that a Mad10-derived peptide, which represents the most conserved region of Mad10, binds strongly to (100)- and (111)-oriented single-crystalline magnetite thin films. The peptide-magnetite interaction is thus material- but not crystal-face-specific. It is characterized by broad rupture force distributions that do not depend on the retraction speed of the AFM cantilever. To account for these experimental findings, we introduce a three-state model that incorporates fast rebinding. The model suggests that the peptide-surface interaction is strong in the absence of load, which is a direct result of this fast rebinding process. Overall, our study sheds light on the kinetic nature of peptide-surface interactions and introduces a new magnetite-binding peptide with potential use as a functional coating for magnetite nanoparticles in biotechnological and biomedical applications.en_US
dc.languageengen_US
dc.relation.ispartofNano Lettersen_US
dc.sourceNano Letters [ISSN 1530-6984], v. 19 (11), p. 8207-8215en_US
dc.subject3208 Farmacodinámicaen_US
dc.subject.otherMagnetiteen_US
dc.subject.otherMagnetotactic Bacteriaen_US
dc.subject.otherMagnetite-Binding Peptideen_US
dc.subject.otherSingle-Molecule Force Spectroscopyen_US
dc.subject.otherBiomineralizationen_US
dc.subject.otherOrganics-Inorganics Interactionen_US
dc.titleDecoding Biomineralization: Interaction of a Mad10-Derived Peptide with Magnetite Thin Filmsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.9b03560en_US
dc.identifier.isi000497259300077-
dc.identifier.eissn1530-6992-
dc.description.lastpage8215en_US
dc.identifier.issue11-
dc.description.firstpage8207en_US
dc.relation.volume19en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid2798946-
dc.contributor.daisngid31447139-
dc.contributor.daisngid1825922-
dc.contributor.daisngid4131181-
dc.contributor.daisngid1966559-
dc.contributor.daisngid619430-
dc.contributor.daisngid923761-
dc.contributor.daisngid30451451-
dc.contributor.daisngid31978371-
dc.contributor.daisngid30457717-
dc.contributor.daisngid31476817-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Pohl, A-
dc.contributor.wosstandardWOS:Berger, F-
dc.contributor.wosstandardWOS:Sullan, RMA-
dc.contributor.wosstandardWOS:Valverde-Tercedor, C-
dc.contributor.wosstandardWOS:Freindl, K-
dc.contributor.wosstandardWOS:Spiridis, N-
dc.contributor.wosstandardWOS:Lefevre, CT-
dc.contributor.wosstandardWOS:Menguy, N-
dc.contributor.wosstandardWOS:Klumpp, S-
dc.contributor.wosstandardWOS:Blank, KG-
dc.contributor.wosstandardWOS:Faivre, D-
dc.date.coverdateNoviembre 2019en_US
dc.identifier.ulpgcen_US
dc.description.sjr5,786
dc.description.jcr11,238
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0002-2003-246X-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameValverde Tercedor,María Del Carmen-
Colección:Artículos
miniatura
pdf
Adobe PDF (3,57 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 25-feb-2024

Visitas

72
actualizado el 04-feb-2023

Descargas

60
actualizado el 04-feb-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.