Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75354
Campo DC Valoridioma
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorLeón Martín, Sonia Raquelen_US
dc.contributor.authorSalvia, Marco Laen_US
dc.contributor.authorFlorimbi, Giordanaen_US
dc.contributor.authorMartínez Vega, Beatrizen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2020-11-11T08:00:09Z-
dc.date.available2020-11-11T08:00:09Z-
dc.date.issued2020en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/75354-
dc.description.abstractThe early detection of skin cancer is of crucial importance to plan an effective therapy to treat the lesion. In routine medical practice, the diagnosis is based on the visual inspection of the lesion and it relies on the dermatologists’ expertise. After a first examination, the dermatologist may require a biopsy to confirm if the lesion is malignant or not. This methodology suffers from false positives and negatives issues, leading to unnecessary surgical procedures. Hyperspectral imaging is gaining relevance in this medical field since it is a non-invasive and non-ionizing technique, capable of providing higher accuracy than traditional imaging methods. Therefore, the development of an automatic classification system based on hyperspectral images could improve the medical practice to distinguish pigmented skin lesions from malignant, benign, and atypical lesions. Additionally, the system can assist general practitioners in first aid care to prevent noncritical lesions from reaching dermatologists, thereby alleviating the workload of medical specialists. In this paper is presented a parallel pipeline for skin cancer detection that exploits hyperspectral imaging. The computational times of the serial processing have been reduced by adopting multicore and many-core technologies, such as OpenMP and CUDA paradigms. Different parallel approaches have been combined, leading to the development of fifteen classification pipeline versions. Experimental results using in-vivo hyperspectral images show that a hybrid parallel approach is capable of classifying an image of 50 × 50 pixels with 125 bands in less than 1 s.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland)[EISSN 2079-9292],v. 9 (9), p. 1-21, (Septiembre 2020)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCancer Detectionen_US
dc.subject.otherGraphic Processing Unitsen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherMulticore Cpuen_US
dc.subject.otherReal-Time Systemsen_US
dc.titleParallel classification pipelines for skin cancer detection exploiting hyperspectral imaging on hybrid systemsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics9091503en_US
dc.identifier.scopus85090760289-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid57218917237-
dc.contributor.authorscopusid57118346500-
dc.contributor.authorscopusid57218919933-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid55937698500-
dc.identifier.eissn2079-9292-
dc.description.lastpage21en_US
dc.identifier.issue9-
dc.description.firstpage1en_US
dc.relation.volume9en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,36
dc.description.jcr2,397
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0001-7835-9660-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameMartínez Vega, Beatriz-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
miniatura
Adobe PDF (3,6 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.