Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75313
Título: Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control
Autores/as: Díaz, Santiago
Carta González, José Antonio 
Castañeda, Alberto
Clasificación UNESCO: 3313 Tecnología e ingeniería mecánicas
Palabras clave: Wind Farm Power Output
Machine Learning
Active Power Set-Point
Nacelle Orientation
Air Density, et al.
Fecha de publicación: 2020
Publicación seriada: Renewable Energy 
Resumen: This paper analyses the influence of the variation of meteorological and operational parameters on estimation of the power output of a dispatchable wind farm (WF). The active power set-points (APSPs), established to regulate the wind farm power output (WFPO), are one of the analysed parameters. The WF considered as case study is integrated in the Gorona del Viento wind-hydro power plant (El HierroCanary Islands-Spain), which supplies the primary energy demand of the island.Statistical inference between the errors generated by different WFPO estimation models, each fed with different input features, is performed. These models are based on supervised machine learning (ML) regression algorithms, namely support vector regression, random forest, and a combination of the strengths of these two base learning algorithms constructed using stacked regression ensemble techniques. From the results obtained, the following conclusions are drawn: a) There is a marked difference between the errors obtained with the model that only considers wind speed and direction and that which additionally incorporates the APSP parameter, showing the importance of considering this particular parameter; b) the model which incorporates air density and turbulence intensity in addition to the APSP improves the values of all the metrics, independently of the ML technique employed.
URI: http://hdl.handle.net/10553/75313
ISSN: 0960-1481
DOI: 10.1016/j.renene.2020.05.187
Fuente: Renewable Energy [ISSN 0960-1481], v. 159, p. 812-826, (Octubre 2020)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 17-nov-2024

Visitas

83
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.