Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74647
Título: | Ingestion and impact of microplastics on arctic Calanus copepods | Autores/as: | Rodríguez-Torres, Rocío Almeda García, Rodrigo Kristiansen, Michael Rist, Sinja Winding, Mie S. Nielsen, Torkel Gissel |
Clasificación UNESCO: | 2401 Biología animal (zoología) 240119 Zoología marina |
Palabras clave: | Arctic Copepods Egg Production Fecal Pellet Production Microplastic Ingestion Microplastics |
Fecha de publicación: | 2020 | Publicación seriada: | Aquatic Toxicology | Resumen: | Microplastics (MPs) are contaminants of emerging concern in the Arctic, but knowledge of their potential effects on Arctic plankton food webs remains scarce. We experimentally investigated ingestion and effects of MPs (20 μm polyethylene spheres) on the arctic copepods Calanus finmarchicus, C. glacialis and C. hyperboreus. These species dominate arctic zooplankton biomass and are relevant target species to investigate the potential impacts of MPs on the Arctic marine ecosystem. Females of each species were exposed to two concentrations of MPs (200 and 20,000 MPs L−1) in combination with different food (diatom) concentrations, reflecting high (3000–5000 cells mL−1, spring phytoplankton bloom) and low (50–500 cells mL−1, pre/post bloom) food conditions. MPs did not affect negatively fecal pellet production rates in any of the species at the studied exposure concentrations. However, egg production rates of copepods exposed to MPs were 8 times higher compared with the controls, which suggests that MP exposure can cause stress-induced spawning in arctic copepods. Microscopic examination of the fecal pellets confirmed ingested MPs in the three species (up to aprox. 1000 MPs cop−1 d−1). The number of MPs per pellet decreased exponentially with increasing food concentration. The daily ingestion of MPs per copepod was higher at low- food concentrations (250–500 cells mL−1). At our exposure conditions, the presence of MPs inside C. hyperboreus fecal pellets did not affect their sinking rates. Overall, our experimental research show that 1) acute exposure to virgin polyethylene MPs has a low impact on arctic Calanus species at environmentally relevant MP concentrations, independent of food availability, and 2) arctic copepods influence the environmental fate of plankton-sized MPs by exporting buoyant MPs from the surface layer to the sea floor via fecal pellets. | URI: | http://hdl.handle.net/10553/74647 | ISSN: | 0166-445X | DOI: | 10.1016/j.aquatox.2020.105631 | Fuente: | Aquatic Toxicology [ISSN 0166-445X], v. 228, 105631, (Noviembre 2020) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.