Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/74647
Title: Ingestion and impact of microplastics on arctic Calanus copepods
Authors: Rodríguez-Torres, Rocío
Almeda García, Rodrigo 
Kristiansen, Michael
Rist, Sinja
Winding, Mie S.
Nielsen, Torkel Gissel
UNESCO Clasification: 2401 Biología animal (zoología)
240119 Zoología marina
Keywords: Arctic Copepods
Egg Production
Fecal Pellet Production
Microplastic Ingestion
Microplastics
Issue Date: 2020
Journal: Aquatic Toxicology 
Abstract: Microplastics (MPs) are contaminants of emerging concern in the Arctic, but knowledge of their potential effects on Arctic plankton food webs remains scarce. We experimentally investigated ingestion and effects of MPs (20 μm polyethylene spheres) on the arctic copepods Calanus finmarchicus, C. glacialis and C. hyperboreus. These species dominate arctic zooplankton biomass and are relevant target species to investigate the potential impacts of MPs on the Arctic marine ecosystem. Females of each species were exposed to two concentrations of MPs (200 and 20,000 MPs L−1) in combination with different food (diatom) concentrations, reflecting high (3000–5000 cells mL−1, spring phytoplankton bloom) and low (50–500 cells mL−1, pre/post bloom) food conditions. MPs did not affect negatively fecal pellet production rates in any of the species at the studied exposure concentrations. However, egg production rates of copepods exposed to MPs were 8 times higher compared with the controls, which suggests that MP exposure can cause stress-induced spawning in arctic copepods. Microscopic examination of the fecal pellets confirmed ingested MPs in the three species (up to aprox. 1000 MPs cop−1 d−1). The number of MPs per pellet decreased exponentially with increasing food concentration. The daily ingestion of MPs per copepod was higher at low- food concentrations (250–500 cells mL−1). At our exposure conditions, the presence of MPs inside C. hyperboreus fecal pellets did not affect their sinking rates. Overall, our experimental research show that 1) acute exposure to virgin polyethylene MPs has a low impact on arctic Calanus species at environmentally relevant MP concentrations, independent of food availability, and 2) arctic copepods influence the environmental fate of plankton-sized MPs by exporting buoyant MPs from the surface layer to the sea floor via fecal pellets.
URI: http://hdl.handle.net/10553/74647
ISSN: 0166-445X
DOI: 10.1016/j.aquatox.2020.105631
Source: Aquatic Toxicology [ISSN 0166-445X], v. 228, 105631, (Noviembre 2020)
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.