Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74387
Campo DC Valoridioma
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2020-09-15T08:37:56Z-
dc.date.available2020-09-15T08:37:56Z-
dc.date.issued2020en_US
dc.identifier.issn1746-8094en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/74387-
dc.description.abstractA probabilistic model for sleep analysis is proposed in this work, modeling the temporal relation between the sleep structure and the presence of the electroencephalogram (EEG) Cyclic Alternating Pattern (CAP) with a Hidden Markov Model (HMM). Sleep scoring is frequently performed by assigning a state to each thirty second epoch. However, this approach does not provide enough time resolution to efficiently detect the CAP since, by definition, the CAP cycles are assessed by applying the scoring rules to one second epochs of the EEG signal. Thus, a clustering analysis was employed, with a one second epoch, over the EEG signal to create clusters that were then encoded using symbolic dynamics to produce words. Two algorithms for clustering were analyzed, specifically the self-organizing map and the Gaussian Mixture Model (GMM). The words were then fed to the HMM to determine the presence of the CAP. Both single-channel and multi-channel (based on sensor fusion) approaches were tested. The best results were attained using the GMM with three Gaussians, achieving an average accuracy, sensitivity, specificity and area under the receiver operating characteristic curve of, respectively, 72%, 66%, 75% and 0.71 for single-channel and 76%, 61%, 85% and 0.73 for multi-channel. This results are in the specialist agreement range with visual analysis. Therefore, the proposed model is capable of providing a new view over the CAP cycles by simplifying the complex EEG signal to a simple sequence of symbols. Such analysis can be significantly challenging to perform in more abstract models.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.sourceBiomedical Signal Processing and Control [ISSN 1746-8094], v. 62, 102063, (Septiembre 2020)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCAPen_US
dc.subject.otherGMMen_US
dc.subject.otherHMMen_US
dc.subject.otherSleep Analysisen_US
dc.subject.otherSOMen_US
dc.titleCyclic alternating pattern estimation based on a probabilistic model over an EEG signalen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bspc.2020.102063en_US
dc.identifier.scopus85087912759-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn1746-8108-
dc.relation.volume62en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,767
dc.description.jcr3,88
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 17-nov-2024

Visitas

144
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.