Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/74178
Title: An optimization algorithm for imprecise multi-objective problem functions
Authors: Limbourg, Philipp
Aponte, Daniel E.Salazar
UNESCO Clasification: 12 Matemáticas
Issue Date: 2005
Publisher: Institute of Electrical and Electronics Engineers (IEEE) 
Journal: IEEE Transactions on Evolutionary Computation 
Conference: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005 
Abstract: Real world objective functions often produce two types of uncertain output: Noise and imprecision. While there is a distinct difference between both types, most optimization algorithms treat them the same. This paper introduces an alternative way to handle imprecise, interval-valued objective functions, namely imprecision-propagating MOEAs. Hypervolume metrics and imprecision measures are extended to imprecise Pareto sets. The performance of the new approach is experimentally compared to a standard distribution-assuming MOEA.
URI: http://hdl.handle.net/10553/74178
ISBN: 0780393635
ISSN: 1089-778X
DOI: 10.1109/CEC.2005.1554719
Source: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings, v. 1, p. 459-466, (Octubre 2005)
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

111
checked on Mar 30, 2025

Page view(s)

72
checked on Dec 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.