Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/74178
Title: An optimization algorithm for imprecise multi-objective problem functions
Authors: Limbourg, Philipp
Aponte, Daniel E.Salazar
UNESCO Clasification: 12 Matemáticas
Issue Date: 2005
Publisher: Institute of Electrical and Electronics Engineers (IEEE) 
Journal: IEEE Transactions on Evolutionary Computation 
Conference: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005 
Abstract: Real world objective functions often produce two types of uncertain output: Noise and imprecision. While there is a distinct difference between both types, most optimization algorithms treat them the same. This paper introduces an alternative way to handle imprecise, interval-valued objective functions, namely imprecision-propagating MOEAs. Hypervolume metrics and imprecision measures are extended to imprecise Pareto sets. The performance of the new approach is experimentally compared to a standard distribution-assuming MOEA.
URI: http://hdl.handle.net/10553/74178
ISBN: 0780393635
ISSN: 1089-778X
DOI: 10.1109/CEC.2005.1554719
Source: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings, v. 1, p. 459-466, (Octubre 2005)
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.