Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74040
Título: Evaluation of a semi-automatic segmentation algorithm in 3D intraoperative ultrasound brain angiography
Autores/as: Chalopin, Claire
Krissian, Karl
Meixensberger, Jurgen
Muns, Andrea
Arlt, Felix
Lindner, Dirk
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Blood Vessel
Neurosurgery
Phantom
Visualization
Fecha de publicación: 2013
Publicación seriada: Biomedizinische Technik (Berlin. Zeitschrift) 
Resumen: In this work, we adapted a semi-automatic segmentation algorithm for vascular structures to extract cerebral blood vessels in the 3D intraoperative contrastenhanced ultrasound angiographic (3D-iUSA) data of the brain. We quantitatively evaluated the segmentation method with a physical vascular phantom. The geometrical features of the segmentation model generated by the algorithm were compared with the theoretical tube values and manual delineations provided by observers. For a silicon tube with a radius of 2 mm, the results showed that the algorithm overestimated the lumen radii values by about 1 mm, representing one voxel in the 3D-iUSA data. However, the observers were more hindered by noise and artifacts in the data, resulting in a larger overestimation of the tube lumen (twice the reference size). The first results on 3D-iUSA patient data showed that the algorithm could correctly restitute the main vascular segments with realistic geometrical features data, despite noise, artifacts and unclear blood vessel borders. A future aim of this work is to provide neurosurgeons with a visualization tool to navigate through the brain during aneurysm clipping operations.
URI: http://hdl.handle.net/10553/74040
ISSN: 0013-5585
DOI: 10.1515/bmt-2012-0089
Fuente: Biomedizinische Technik [ISSN 0013-5585], v. 58 (3), p. 293-302, (Junio 2013)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

158
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.