Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73965
Campo DC Valoridioma
dc.contributor.authorZio, Enricoen_US
dc.contributor.authorRocco, Claudio M.en_US
dc.contributor.authorSalazar, Daniel E.en_US
dc.contributor.authorMüller, Gonzaloen_US
dc.date.accessioned2020-08-05T10:32:04Z-
dc.date.available2020-08-05T10:32:04Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7803-9766-8en_US
dc.identifier.issn0149-144Xen_US
dc.identifier.otherWoS-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73965-
dc.description.abstractThis paper extends previous works developed for evaluating the security characteristics of a network system (e.g. for water supply, electric power or gas distribution) exposed to a terrorist "attack", by taking into account simultaneously several characteristics [1].Given a source node where the hazard is injected, two criteria are used to assess the vulnerability of the network: The Time To Reach All network Destination nodes (TTRAD), a problem similar to the "all-terminal network" evaluation, often performed within network reliability analysis and a measure related to the damage it causes, like the average number of persons affected (ANPA) or other entities (ANEA), in the system.The use of simulation models allows the identification of the network most critical vulnerabilities, i.e. the nodes where an "attack" can cause the worst damage. To effectively handle attacks, several "immunization" schemata with different characteristics could be proposed in order to maximize TTRAD or to minimize ANAP.The single implementation of any of the immunization schemata could mitigate the effects of the attacks; however a more realistic formulation should consider the simultaneous optimization of two or more objectives, such as cost and vulnerability or vulnerability and reliability. Using a single-objective (SO) formulation, any designer or decision-maker (DM) must solve several problems by varying a group of constraints to obtain a set of alternatives from which to choose the final solution. On the contrary, a multiple objective (MO) approach allows determining directly the Pareto set of alternatives from which the DM can choose the preferred one.The MO problem is solved using Multiple Objective Evolutionary Algorithms (MOEA), a group of evolutionary algorithms tailored to cope with MO problems. This group of algorithms conjugates the basic concepts of dominance with the general characteristics of evolutionary algorithms. In this paper we propose a MO formulation, which is able to generate a set of alternatives, based on two or more conflicting objectives. The DM can perform a complete vulnerability study and, a posteriori, define a possible protective scheme. Using the MO approach, it is also possible to define a robust protective scheme. That is to select a set of nodes whose protection generates on average, the least damage. Numerical examples illustrate the approach.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofProceedings. Annual Reliability and Maintainability Symposiumen_US
dc.source2007 Proceedings - Annual Reliability and Maintainability Symposium, RAMS [ISSN 0149-144X], p. 196-201, (Agosto 2007)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherEvolutionary Algorithmsen_US
dc.subject.otherReliability Problemsen_US
dc.subject.otherSecurity Assessmenten_US
dc.subject.otherCellular Automataen_US
dc.subject.otherMonte Carlo Simulationen_US
dc.titleComplex networks vulnerability: A multiple-objective optimization approachen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference53rd Annual Reliability and Maintainability Symposium (RAMS)en_US
dc.identifier.doi10.1109/RAMS.2007.328119en_US
dc.identifier.scopus34547317894-
dc.identifier.isi000250381800035-
dc.contributor.authorscopusid7005289082-
dc.contributor.authorscopusid7004508307-
dc.contributor.authorscopusid56240751500-
dc.contributor.authorscopusid55944420000-
dc.description.lastpage201en_US
dc.description.firstpage196en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid11080-
dc.contributor.daisngid771425-
dc.contributor.daisngid1400577-
dc.contributor.daisngid33674181-
dc.description.numberofpages3en_US
dc.identifier.eisbn0-7803-9767-3-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Zio, E-
dc.contributor.wosstandardWOS:Rocco, CM-
dc.contributor.wosstandardWOS:Salazar, DE-
dc.contributor.wosstandardWOS:Muller, G-
dc.date.coverdateAgosto 2007en_US
dc.identifier.conferenceidevents120578-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate22-01-2007-
crisitem.event.eventsenddate25-01-2007-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

4
actualizado el 17-nov-2024

Visitas

62
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.