Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73448
Campo DC Valoridioma
dc.contributor.authorRooker, M.en_US
dc.contributor.authorLópez Feliciano, José Franciscoen_US
dc.contributor.authorHorstrand Andaluz, Pablo Sebastianen_US
dc.contributor.authorPusenius, M.en_US
dc.contributor.authorLeppälampi, T.en_US
dc.contributor.authorLattarulo, R.en_US
dc.contributor.authorPérez, J.en_US
dc.contributor.authorSlavik, Z.en_US
dc.contributor.authorSáez, S.en_US
dc.contributor.authorAndreu, L.en_US
dc.contributor.authorRuiz, A.en_US
dc.contributor.authorPereira, D.en_US
dc.contributor.authorZhao, L.en_US
dc.date.accessioned2020-06-23T12:27:29Z-
dc.date.available2020-06-23T12:27:29Z-
dc.date.issued2019en_US
dc.identifier.isbn978-3-030-14627-6en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73448-
dc.description.abstractThis chapter presents first concepts for the improved validation of automated farming solutions. Within the ENABLE-S3 ECSEL JU project, the farming use case team presents developments within the agricultural domain, that can in the future improve the life and working environment of farmers. Applications such as autonomous driving of farming vehicles equipped with sensors and drones supporting hyperspectral cameras, validated by newly defined testing systems like co-simulation of farming vehicles, model-based simulation of farming systems and verification and testing of in-vehicle communication are advances developed during the project. As agricultural activities are very dependent on environmental parameters (e.g. weather, harvest ripeness) and the availability of the actual vehicles (which is very often not the case), the use case team opted for realistic simulators for first validation approaches. In this work, multiple simulators are introduced that combine many agricultural concepts including the simulation of the farming systems (i.e. harvester, tractors and drones). Additionally, introducing autonomy into vehicles requires deterministic in-vehicle communication and the guarantee that messages arrive timely. Validation of in-vehicle communication is introduced to showcase the applicability of the technology. The overall goal of the work performed in this use case is to reduce the testing costs and time of farming scenarios, be less dependent on many factors (like crop availability) and be able to perform continuous validation and verification of the farming systems.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.sourceValidation and Verification of Automated Systems / Leitner A., Watzenig D., Ibanez-Guzman J. (eds), p. 271-295, (Enero 2019)en_US
dc.subject3102 Ingeniería agrícolaen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherAgricultureen_US
dc.subject.otherCo-Simulationen_US
dc.subject.otherCommunicationen_US
dc.subject.otherEnable S3en_US
dc.subject.otherFarmingen_US
dc.subject.otherHyperspectralen_US
dc.subject.otherModel-Based Simulationen_US
dc.subject.otherSensorsen_US
dc.subject.otherTiming Behavioren_US
dc.subject.otherTrajectory Planningen_US
dc.subject.otherValidationen_US
dc.subject.otherVerificationen_US
dc.titleValidation of automated farmingen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBooken_US
dc.identifier.doi10.1007/978-3-030-14628-3_20en_US
dc.identifier.scopus85085830146-
dc.contributor.authorscopusid23095805900-
dc.contributor.authorscopusid7404444793-
dc.contributor.authorscopusid54399861900-
dc.contributor.authorscopusid6505601729-
dc.contributor.authorscopusid8703403000-
dc.contributor.authorscopusid56308217400-
dc.contributor.authorscopusid7403414696-
dc.contributor.authorscopusid57193069711-
dc.contributor.authorscopusid57216586825-
dc.contributor.authorscopusid57217022863-
dc.contributor.authorscopusid7203007557-
dc.contributor.authorscopusid56185089900-
dc.contributor.authorscopusid57217024003-
dc.description.lastpage295en_US
dc.description.firstpage271en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.identifier.eisbn978-3-030-14628-3-
dc.utils.revisionen_US
dc.date.coverdateEnero 2019en_US
dc.identifier.ulpgces
dc.description.spiqQ1
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUIBS: Nutrición-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0002-6304-2801-
crisitem.author.orcid0000-0001-5726-3731-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameLópez Feliciano, José Francisco-
crisitem.author.fullNameHorstrand Andaluz,Pablo Sebastian-
crisitem.author.fullNameÁlvarez Pérez,Jacqueline-
crisitem.author.fullNameSáez Afonso, Sonia Irene-
Colección:Capítulo de libro
Vista resumida

Visitas

65
actualizado el 12-ago-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.