Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/73438
Title: | The 8T-LE partition applied to the obtuse triangulations of the 3D-cube | Authors: | Padrón Medina, Miguel Ángel Plaza De La Hoz, Ángel |
UNESCO Clasification: | 1206 Análisis numérico 120602 Ecuaciones diferenciales 120309 Diseño con ayuda del ordenador |
Keywords: | Similarity classes 8-tetrahedra longest-edge partition Trirectangular tetrahedron Right-type tetrahedron Quasi-right-type tetrahedron |
Issue Date: | 2020 | Project: | Métodos de Mallas Para la Representación Del Impacto Visual de Instalaciones Energéticas en Entornos de Realidad Virtual y Aumentada | Journal: | Mathematics and Computers in Simulation | Abstract: | Four of the six types of the regular triangulations of the 3D-cube, up to isomorphism, are obtuse. We study the eight-tetrahedra longest-edge partition (8T-LE) of the triangulations of the cube containing two regular right-type tetrahedra, two regular trirectangular tetrahedra and two quasi right-type tetrahedra. We prove that the iterative 8T-LE partition of these triangulations yields a sequence of triangulations where the number of similarity classes is bounded, and hence the non-degeneracy of the meshes is simply proved. It is also proved that asymptotically, most of the tetrahedra generated are regular right-type. | URI: | http://hdl.handle.net/10553/73438 | ISSN: | 0378-4754 | DOI: | 10.1016/j.matcom.2020.01.011 | Source: | Mathematics and Computers in Simulation [ISSN 0378-4754], v. 176, p. 254-265, (Octubre 2020) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
3
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 17, 2024
Page view(s)
188
checked on Sep 28, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.