Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73438
Title: The 8T-LE partition applied to the obtuse triangulations of the 3D-cube
Authors: Padrón Medina, Miguel Ángel 
Plaza De La Hoz, Ángel 
UNESCO Clasification: 1206 Análisis numérico
120602 Ecuaciones diferenciales
120309 Diseño con ayuda del ordenador
Keywords: Similarity classes
8-tetrahedra longest-edge partition
Trirectangular tetrahedron
Right-type tetrahedron
Quasi-right-type tetrahedron
Issue Date: 2020
Project: Métodos de Mallas Para la Representación Del Impacto Visual de Instalaciones Energéticas en Entornos de Realidad Virtual y Aumentada 
Journal: Mathematics and Computers in Simulation 
Abstract: Four of the six types of the regular triangulations of the 3D-cube, up to isomorphism, are obtuse. We study the eight-tetrahedra longest-edge partition (8T-LE) of the triangulations of the cube containing two regular right-type tetrahedra, two regular trirectangular tetrahedra and two quasi right-type tetrahedra. We prove that the iterative 8T-LE partition of these triangulations yields a sequence of triangulations where the number of similarity classes is bounded, and hence the non-degeneracy of the meshes is simply proved. It is also proved that asymptotically, most of the tetrahedra generated are regular right-type.
URI: http://hdl.handle.net/10553/73438
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2020.01.011
Source: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 176, p. 254-265, (Octubre 2020)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

188
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.