Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73333
Campo DC Valoridioma
dc.contributor.authorDghim Ep Aatar, Soumayaen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorEsteban-Hernandez, Luisen_US
dc.date.accessioned2020-06-17T09:32:36Z-
dc.date.available2020-06-17T09:32:36Z-
dc.date.issued2020en_US
dc.identifier.isbn978-1-7281-5432-9en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73333-
dc.description.abstractThis paper is concerned with the combination of microscopic image processing tools and artificial intelligence in order to detect and recognize the Nosema disease, which affects honey bees. In fact, the use of imaging processing tools in medical and biological sciences was significantly increased, especially in the detection and diagnosis of diseases. Our work focuses on a segmentation method which analyses the objects of an image and decides if it is Nosema or not. A set of the significant values of geometric and texture features has been calculated and fused as a definition for a Nosema cell. A MultiLayer neural network was applied as classifier to detect and recognize this disease on Nosema images. Finally, our automatic segmentation approach shows a 91% of accuracy, in the process of identifying the Nosema disease.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.source2020 International Conference on Contemporary Computing and Applications, IC3A 2020, p. 212-216, (Febrero 2020)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherFeature Extrationsen_US
dc.subject.otherImage Processingen_US
dc.subject.otherNeural Networksen_US
dc.subject.otherNosema Diseaseen_US
dc.subject.otherSegmentation Methoden_US
dc.titleNosema Pathogenic Agent Recognition Based on Geometrical and Texture Features Using Neural Network Classifieren_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational Conference on Contemporary Computing and Applications (IC3A 2020)en_US
dc.identifier.doi10.1109/IC3A48958.2020.233299en_US
dc.identifier.scopus85085056340-
dc.contributor.authorscopusid57216858504-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57215532908-
dc.description.lastpage216en_US
dc.description.firstpage212en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-7281-5433-6-
dc.utils.revisionen_US
dc.date.coverdateFebrero 2020en_US
dc.identifier.conferenceidevents128146-
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDghim Ep Aatar, Soumaya-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate05-02-2020-
crisitem.event.eventsenddate07-02-2020-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 30-mar-2025

Visitas

114
actualizado el 20-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.