Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73333
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Dghim Ep Aatar, Soumaya | en_US |
dc.contributor.author | Travieso, Carlos M. | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.contributor.author | Esteban-Hernandez, Luis | en_US |
dc.date.accessioned | 2020-06-17T09:32:36Z | - |
dc.date.available | 2020-06-17T09:32:36Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.isbn | 978-1-7281-5432-9 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73333 | - |
dc.description.abstract | This paper is concerned with the combination of microscopic image processing tools and artificial intelligence in order to detect and recognize the Nosema disease, which affects honey bees. In fact, the use of imaging processing tools in medical and biological sciences was significantly increased, especially in the detection and diagnosis of diseases. Our work focuses on a segmentation method which analyses the objects of an image and decides if it is Nosema or not. A set of the significant values of geometric and texture features has been calculated and fused as a definition for a Nosema cell. A MultiLayer neural network was applied as classifier to detect and recognize this disease on Nosema images. Finally, our automatic segmentation approach shows a 91% of accuracy, in the process of identifying the Nosema disease. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.source | 2020 International Conference on Contemporary Computing and Applications, IC3A 2020, p. 212-216, (Febrero 2020) | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject.other | Artificial Intelligence | en_US |
dc.subject.other | Feature Extrations | en_US |
dc.subject.other | Image Processing | en_US |
dc.subject.other | Neural Networks | en_US |
dc.subject.other | Nosema Disease | en_US |
dc.subject.other | Segmentation Method | en_US |
dc.title | Nosema Pathogenic Agent Recognition Based on Geometrical and Texture Features Using Neural Network Classifier | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | International Conference on Contemporary Computing and Applications (IC3A 2020) | en_US |
dc.identifier.doi | 10.1109/IC3A48958.2020.233299 | en_US |
dc.identifier.scopus | 85085056340 | - |
dc.contributor.authorscopusid | 57216858504 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 57215532908 | - |
dc.description.lastpage | 216 | en_US |
dc.description.firstpage | 212 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.eisbn | 978-1-7281-5433-6 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Febrero 2020 | en_US |
dc.identifier.conferenceid | events128146 | - |
dc.identifier.ulpgc | Sí | es |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Dghim Ep Aatar, Soumaya | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.event.eventsstartdate | 05-02-2020 | - |
crisitem.event.eventsenddate | 07-02-2020 | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 30-mar-2025
Visitas
114
actualizado el 20-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.