Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73316
Title: Turing universality of neural nets (revisited)
Authors: Neto, Pedro J.
Siegelmann, Hava T.
Costa, Félix J.
Suárez Araujo, C. P. 
UNESCO Clasification: 120304 Inteligencia artificial
Keywords: Modularity
Neural computation
Recursive function theory
Issue Date: 1997
Journal: Lecture Notes in Computer Science 
Conference: 6th International Workshop on Computer Aided Systems Theory, EUROCAST 1997 
Abstract: We show how to use recursive function theory to prove Turing universality of finite analog recurrent neural nets, with a piecewise linear sigmoid function as activation function. We emphasize the modular construction of nets within nets, a relevant issue from the software engineering point of view.
URI: http://hdl.handle.net/10553/73316
ISBN: 3-540-63811-3
ISSN: 0302-9743
DOI: 10.1007/BFb0025058
Source: Pichler F., Moreno-Díaz R. (eds) Computer Aided Systems Theory — EUROCAST 1997. Lecture Notes in Computer Science, v. 1333, p. 361-366. Springer, Berlin, Heidelberg [ISSN 0302-9743], (Enero 1997)
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.