Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73272
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Rodríguez-Rodríguez, José C. | en_US |
dc.contributor.author | De Blasio, Gabriele Salvatore | en_US |
dc.contributor.author | García, Carmelo R. | en_US |
dc.contributor.author | Quesada-Arencibia, Alexis | en_US |
dc.date.accessioned | 2020-06-15T11:24:43Z | - |
dc.date.available | 2020-06-15T11:24:43Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73272 | - |
dc.description.abstract | This paper expands upon a previous publication and is the natural continuation of an earlier study which presented an industrial validator of expiration codes printed on aluminium or tin cans, called MONICOD. MONICOD is distinguished by its high operating speed, running at 200 frames per second and validating up to 35 cans per second. This paper adds further detail to this description by describing the final stage of the MONICOD industrial validator: the process of effectively validating the characters. In this process we compare the acquired shapes, segmented during the prior stages, with expected character shapes. To do this, we use a template matching scheme (here called “morphologies”) based on bitwise operations. Two learning algorithms for building the valid morphology databases are also presented. The results of the study presented here show that in the acquisition of 9885 frames containing 465 cans to be validated, there was only one false positive (0.21% of the total). Another notable feature is that it is at least 20% faster in validation time with error rates similar to those of classifiers such as support vector machines (SVM), radial base functions (RBF), multi-layer perceptron with backpropagation (MLP) and k-nearest neighbours (KNN). | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors (Switzerland) | en_US |
dc.source | Sensors (Switzerland) [ISSN 1424-8220], v. 20 (11), (Junio 2020) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Character segmentation | en_US |
dc.subject.other | Image processing | en_US |
dc.subject.other | Industrial inspection | en_US |
dc.subject.other | Ocr | en_US |
dc.subject.other | Optical character recognition | en_US |
dc.subject.other | Pattern recognition | en_US |
dc.subject.other | Supervised learning | en_US |
dc.subject.other | Template matching | en_US |
dc.subject.other | Tracking | en_US |
dc.subject.other | Unsupervised learning | en_US |
dc.subject.other | Very high-speed computing | en_US |
dc.title | A very high-speed validation scheme based on template matching for segmented character expiration codes on beverage cans | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s20113157 | en_US |
dc.identifier.scopus | 85085972751 | - |
dc.contributor.authorscopusid | 8925188600 | - |
dc.contributor.authorscopusid | 8935044600 | - |
dc.contributor.authorscopusid | 7401486323 | - |
dc.contributor.authorscopusid | 13006053800 | - |
dc.identifier.issue | 11 | - |
dc.relation.volume | 20 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Junio 2020 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 0,636 | |
dc.description.jcr | 3,576 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2186-3094 | - |
crisitem.author.orcid | 0000-0002-6233-567X | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Rodríguez Rodríguez, José Carlos | - |
crisitem.author.fullName | De Blasio, Gabriele Salvatore | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
Colección: | Artículos |
Visitas
154
actualizado el 22-jun-2024
Descargas
126
actualizado el 22-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.