Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73272
Campo DC Valoridioma
dc.contributor.authorRodríguez-Rodríguez, José C.en_US
dc.contributor.authorDe Blasio, Gabriele Salvatoreen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.date.accessioned2020-06-15T11:24:43Z-
dc.date.available2020-06-15T11:24:43Z-
dc.date.issued2020en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73272-
dc.description.abstractThis paper expands upon a previous publication and is the natural continuation of an earlier study which presented an industrial validator of expiration codes printed on aluminium or tin cans, called MONICOD. MONICOD is distinguished by its high operating speed, running at 200 frames per second and validating up to 35 cans per second. This paper adds further detail to this description by describing the final stage of the MONICOD industrial validator: the process of effectively validating the characters. In this process we compare the acquired shapes, segmented during the prior stages, with expected character shapes. To do this, we use a template matching scheme (here called “morphologies”) based on bitwise operations. Two learning algorithms for building the valid morphology databases are also presented. The results of the study presented here show that in the acquisition of 9885 frames containing 465 cans to be validated, there was only one false positive (0.21% of the total). Another notable feature is that it is at least 20% faster in validation time with error rates similar to those of classifiers such as support vector machines (SVM), radial base functions (RBF), multi-layer perceptron with backpropagation (MLP) and k-nearest neighbours (KNN).en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors (Switzerland) [ISSN 1424-8220], v. 20 (11), (Junio 2020)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherCharacter segmentationen_US
dc.subject.otherImage processingen_US
dc.subject.otherIndustrial inspectionen_US
dc.subject.otherOcren_US
dc.subject.otherOptical character recognitionen_US
dc.subject.otherPattern recognitionen_US
dc.subject.otherSupervised learningen_US
dc.subject.otherTemplate matchingen_US
dc.subject.otherTrackingen_US
dc.subject.otherUnsupervised learningen_US
dc.subject.otherVery high-speed computingen_US
dc.titleA very high-speed validation scheme based on template matching for segmented character expiration codes on beverage cansen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s20113157en_US
dc.identifier.scopus85085972751-
dc.contributor.authorscopusid8925188600-
dc.contributor.authorscopusid8935044600-
dc.contributor.authorscopusid7401486323-
dc.contributor.authorscopusid13006053800-
dc.identifier.issue11-
dc.relation.volume20en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2020en_US
dc.identifier.ulpgcen_US
dc.description.sjr0,636
dc.description.jcr3,576
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2186-3094-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameRodríguez Rodríguez, José Carlos-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
Colección:Artículos
miniatura
PDF
Adobe PDF (16,53 MB)
Vista resumida

Visitas

154
actualizado el 22-jun-2024

Descargas

126
actualizado el 22-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.