Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72960
Título: | Objective Bayesian model choice for non-nested families: the case of the Poisson and the negative binomial | Autores/as: | Moreno, Elías Martínez, Carmen Vázquez Polo, Francisco José |
Clasificación UNESCO: | 530204 Estadística económica | Palabras clave: | Bayesian Model Selection Consistency Rate Of Convergence Sampling Behavior For Small Sample Sizes Test For Separate Families |
Fecha de publicación: | 2021 | Publicación seriada: | Test | Resumen: | Selecting a statistical model from a set of competing models is a central issue in the scientific task, and the Bayesian approach to model selection is based on the posterior model distribution, a quantification of the updated uncertainty on the entertained models. We present a Bayesian procedure for choosing a family between the Poisson and the geometric families and prove that the procedure is consistent with rate O(an) , a> 1 , where a is a function of the parameter of the true model. An extension of this procedure to the multiple testing Poisson and negative binomial with r successes for r= 1 , … , L is also proved to be consistent with exponential rate. For small sample sizes, a simulation study indicates that the model selection between the above distributions is made with large uncertainty when sampling from a specific subset of distributions. This difficulty is however mitigated by the large consistency rate of the procedure. | URI: | http://hdl.handle.net/10553/72960 | ISSN: | 1133-0686 | DOI: | 10.1007/s11749-020-00717-z | Fuente: | Test[ISSN 1133-0686], n. 30, p. 255–273 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
192
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.