Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72960
Título: Objective Bayesian model choice for non-nested families: the case of the Poisson and the negative binomial
Autores/as: Moreno, Elías
Martínez, Carmen
Vázquez Polo, Francisco José 
Clasificación UNESCO: 530204 Estadística económica
Palabras clave: Bayesian Model Selection
Consistency
Rate Of Convergence
Sampling Behavior For Small Sample Sizes
Test For Separate Families
Fecha de publicación: 2021
Publicación seriada: Test 
Resumen: Selecting a statistical model from a set of competing models is a central issue in the scientific task, and the Bayesian approach to model selection is based on the posterior model distribution, a quantification of the updated uncertainty on the entertained models. We present a Bayesian procedure for choosing a family between the Poisson and the geometric families and prove that the procedure is consistent with rate O(an) , a> 1 , where a is a function of the parameter of the true model. An extension of this procedure to the multiple testing Poisson and negative binomial with r successes for r= 1 , … , L is also proved to be consistent with exponential rate. For small sample sizes, a simulation study indicates that the model selection between the above distributions is made with large uncertainty when sampling from a specific subset of distributions. This difficulty is however mitigated by the large consistency rate of the procedure.
URI: http://hdl.handle.net/10553/72960
ISSN: 1133-0686
DOI: 10.1007/s11749-020-00717-z
Fuente: Test[ISSN 1133-0686], n. 30, p. 255–273
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 15-dic-2024

Visitas

192
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.