Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72790
Título: Symmetrical dense optical flow estimation with occlusions detection
Autores/as: Alvarez, Luis 
Deriche, Rachid
Papadopoulo, Théo
Sánchez, Javier 
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
120304 Inteligencia artificial
220990 Tratamiento digital. Imágenes
Palabras clave: Image sequences
Fields
Diffusion
Fecha de publicación: 2002
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 7th European Conference on Computer Vision (ECCV 2002) 
Resumen: Traditional techniques of dense optical flow estimation don't generally yield symmetrical solutions: the results will differ if they are applied between images I-1 and I-2 or between images I-2 and I-1. In this work, we present a method to recover a dense optical flow field map from two images, while explicitely taking into account the symmetry across the images as well as possible occlusions and discontinuities in the flow field. The idea is to consider both displacements vectors from I-1 to I-2 and I-2 to I-1 and to minimise an energy functional that explicitely encodes all those properties. This variational problem is then solved using the gradient flow defined by the Euler-Lagrange equations associated to the energy. In order to reduce the risk to be trapped within some irrelevant minimum, a focusing strategy based on a multi-resolution technique is used to converge toward the solution. Promising experimental results on both synthetic and real images are presented to illustrate the capabilities of this symmetrical variational approach to recover accurate optical flow.
URI: http://hdl.handle.net/10553/72790
ISBN: 978-3-540-43745-1
ISSN: 0302-9743
DOI: 10.1007/3-540-47969-4_48
Fuente: Heyden A., Sparr G., Nielsen M., Johansen P. (eds) Computer Vision — ECCV 2002. Lecture Notes in Computer Science, [ISSN 0302-9743], v. 2350, p. 721-735. Springer, Berlin, Heidelberg. (2002)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

49
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

42
actualizado el 25-feb-2024

Visitas

65
actualizado el 30-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.