Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72767
Campo DC Valoridioma
dc.contributor.authorGonzález, L.en_US
dc.date.accessioned2020-05-26T12:37:31Z-
dc.date.available2020-05-26T12:37:31Z-
dc.date.issued2003en_US
dc.identifier.isbn978-3-540-40155-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72767-
dc.description.abstractIn an arbitrary stochastic Boolean model we compare the values of a finite set of binary states probabilities, without computing them. The relative positions of 0s and 1s in the binary n-tuples decide by themselves which one has the largest probability. This positional criterion defines an intrinsic order relation in {0,1}(n), which is independent of,the probabilities of the Boolean variables. We obtain different characterizations, as well as necessary conditions and sufficient conditions, for intrinsic order. These propositions explain some relevant properties of the structure of the intrinsic order graph. The results can be applied in many different areas: wherever the random variables of the problem are propositional variables (false or true, i.e: 0 or 1).en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceKumar V., Gavrilova M.L., Tan C.J.K., L’Ecuyer P. (eds) Computational Science and Its Applications — ICCSA 2003. Lecture Notes in Computer Science, [ISSN 0302-9743], vol 2667, p. 937-946. Springer, Berlin, Heidelberg. (2003)en_US
dc.subject1208 Probabilidaden_US
dc.subject.otherProbabilitiesen_US
dc.titlen-tuples of 0s and 1s: necessary and sufficient conditions for intrinsic orderen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational Conference on Computational Science and Its Applications (ICCSA 2003)en_US
dc.identifier.doi10.1007/3-540-44839-X_99en_US
dc.identifier.scopus33745963130-
dc.identifier.isi000184326400099-
dc.contributor.authorscopusid7202218949-
dc.description.lastpage946en_US
dc.description.firstpage937en_US
dc.relation.volume2667en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid1802854-
dc.description.numberofpages10en_US
dc.identifier.eisbn978-3-540-44839-6-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Gonzalez, L-
dc.date.coverdateDiciembre 2003en_US
dc.identifier.conferenceidevents120357-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate18-05-2003-
crisitem.event.eventsenddate21-05-2003-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameGonzález Sánchez, Luis-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 25-feb-2024

Visitas

126
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.