Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72553
Title: Cohen-Macaulay modules of infinite projective dimension
Authors: Marcelo Vega, Agustín
Rodríguez Mielgo, César 
Masque, Jaime Munoz
UNESCO Clasification: 1201 Algebra
120101 Geometría algebraica
Keywords: Cohen-Macaulay module
Depth of a module
Minimal free resolution
Projective dimension
Issue Date: 2008
Journal: Communications in Algebra 
Abstract: A characterization of finitely generated torsion modules of not necessarily finite projective dimension over a Cohen-Macaulay ring, is given in terms of the non-Cohen-Macaulay loci and the Fitting invariants of a free resolution of such a module.
URI: http://hdl.handle.net/10553/72553
ISSN: 0092-7872
DOI: 10.1080/00927870801949484
Source: Communications In Algebra [ISSN 0092-7872], v. 36 (6), p. 2072-2078, (Junio 2008)
Appears in Collections:Artículos
Show full item record

Page view(s)

61
checked on Aug 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.