Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72553
Title: | Cohen-Macaulay modules of infinite projective dimension | Authors: | Marcelo Vega, Agustín Rodríguez Mielgo, César Masque, Jaime Munoz |
UNESCO Clasification: | 1201 Algebra 120101 Geometría algebraica |
Keywords: | Cohen-Macaulay module Depth of a module Minimal free resolution Projective dimension |
Issue Date: | 2008 | Journal: | Communications in Algebra | Abstract: | A characterization of finitely generated torsion modules of not necessarily finite projective dimension over a Cohen-Macaulay ring, is given in terms of the non-Cohen-Macaulay loci and the Fitting invariants of a free resolution of such a module. | URI: | http://hdl.handle.net/10553/72553 | ISSN: | 0092-7872 | DOI: | 10.1080/00927870801949484 | Source: | Communications In Algebra [ISSN 0092-7872], v. 36 (6), p. 2072-2078, (Junio 2008) |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.