Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72522
Título: | Complementary optic flow | Autores/as: | Zimmer, Henning Bruhn, Andres Weickert, Joachim Valgaerts, Levi Salgado De la Nuez, Agustín Rosenhahn, Bodo Seidel, Hans-Peter |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Computation Motion |
Fecha de publicación: | 2009 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition | Resumen: | We introduce the concept of complementarity between data and smoothness term in modern variational optic flow methods. First we design a sophisticated data term that incorporates HSV colour representation with higher order constancy assumptions, completely separate robust penalisation, and constraint normalisation. Our anisotropic smoothness term reduces smoothing in the data constraint direction instead of the image edge direction, while enforcing a strong filling-in effect orthogonal to it. This allows optimal complementarity between both terms and avoids undesirable interference. The high quality of our complementary optic flow (COF) approach is demonstrated by the current top ranking result at the Middlebury benchmark. | URI: | http://hdl.handle.net/10553/72522 | ISBN: | 978-3-642-03640-8 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-03641-5_16 | Fuente: | Cremers D., Boykov Y., Blake A., Schmidt F.R. (eds), Energy Minimization Methods In Computer Vision And Pattern Recognition, Proceedings [ISSN 0302-9743], v. 5681, p. 207-220, (2009) |
Colección: | Actas de congresos |
Citas SCOPUSTM
91
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
69
actualizado el 25-feb-2024
Visitas
64
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.