Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72325
DC FieldValueLanguage
dc.contributor.authorTames Espinosa, Maria Teresaen_US
dc.contributor.authorMartínez Sánchez, Icoen_US
dc.contributor.authorRomero Kutzner, Vanesaen_US
dc.contributor.authorCoca Saenz De Albéniz, Josepen_US
dc.contributor.authorAlgueró-Muñiz, Maríaen_US
dc.contributor.authorHorn, Henriette G.en_US
dc.contributor.authorLudwig, Andreaen_US
dc.contributor.authorTaucher, Janen_US
dc.contributor.authorBach, Lennarten_US
dc.contributor.authorRiebesell, Ulfen_US
dc.contributor.authorPackard, Theodore Trainen_US
dc.contributor.authorGómez Cabrera, María Milagrosaen_US
dc.date.accessioned2020-05-13T09:43:52Z-
dc.date.available2020-05-13T09:43:52Z-
dc.date.issued2020en_US
dc.identifier.issn2296-7745en_US
dc.identifier.urihttp://hdl.handle.net/10553/72325-
dc.description.abstractIn the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Φ), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Φ/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Φ/chl-a values below 2.5 μL O2 h−1 (μg chl-a)−1 indicated a community dominated by photoautotrophs. When Φ/chl-a ranged higher, between 2.5 and 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Φ/chl-a rose above 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a community where microzooplankton proliferated (>10.0 μL O2 h−1 (μg chl-a)−1), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Φ, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between Φ and pCO2 during Phase II [α = 230·10−5 μL O2 h−1 L−1 (μatm CO2)−1 (phase-day)−1, R2 = 0.30] and between chl-a and pCO2 during Phase III [α = 100·10−5 μg chl-a L−1 (μ atmCO2)−1 (phase-day)−1, R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the Φ/chl-a ratio [4.1 ± 1.5 μL O2 h−1 (μg chl-a)−1] was more similar to the Φ/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.en_US
dc.languageengen_US
dc.relation.ispartofFrontiers in Marine Scienceen_US
dc.sourceFrontiers in marine science [ISSN 2296-7745], Mayo (2020)en_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject.otherocean acidificationen_US
dc.subject.othermesocosmsen_US
dc.subject.othernutrient fertilizationen_US
dc.subject.othersubtropical North-Atlanticen_US
dc.subject.otherpotential respirationen_US
dc.subject.otherplankton metabolismen_US
dc.subject.othermixotrophyen_US
dc.titleMetabolic Responses of Subtropical Microplankton After a Simulated Deep-Water Upwelling Event Suggest a Possible Dominance of Mixotrophy Under Increasing CO2 Levelsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fmars.2020.00307en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2020en_US
dc.identifier.ulpgces
dc.description.sjr1,42
dc.description.jcr3,661
dc.description.sjrqQ1
dc.description.jcrqQ1
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptEcofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-0607-5321-
crisitem.author.orcid0000-0002-7676-2066-
crisitem.author.orcid0000-0001-7167-2662-
crisitem.author.orcid0000-0003-0625-8240-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.orcid0000-0002-7396-6493-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameTames Espinosa, Maria Teresa-
crisitem.author.fullNameMartínez Sánchez, Ico-
crisitem.author.fullNameRomero Kutzner, Vanesa-
crisitem.author.fullNameCoca Saenz De Albéniz, Josep-
crisitem.author.fullNamePackard, Theodore Train-
crisitem.author.fullNameGómez Cabrera, María Milagrosa-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (767,07 kB)
Show simple item record

Page view(s)

60
checked on Jun 12, 2021

Download(s)

35
checked on Jun 12, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.