Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72264
Título: A job-seeking advisor bot based in data mining
Autores/as: Rodríguez-Rodríguez, J. C. 
De Blasio , Gabriele Salvatore 
García, C. R. 
Quesada-Arencibia, A. 
Clasificación UNESCO: 120312 Bancos de datos
1203 Ciencia de los ordenadores
Palabras clave: Data mining
Employment portal
Job search
Training
Fecha de publicación: 2020
Editor/a: Springer
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: International Conference on Computer Aided Systems Theory (EUROCAST 2019) 
Resumen: Promentor is a solution that advises job seekers how to effectively improve their chances of getting a job in a certain area of interest by focusing on what, at least historically, seems to work best. To this end, Promentor first analyzes previous selection processes, trying to quantitatively evaluate the effective value of the characteristics that the candidates put into play in the selection. With this evaluation, Promentor can estimate the value of a profile of the job seeker who requests advice based on the characteristics that make it up. Promentor then makes a simulation by applying each of the suggestions on the job seeker’s profile exhaustively and evaluating the modified profile. In this way, Promentor identifies which suggestions offer the greatest increase in qualification, and are therefore more recommendable. Promentor is a module of the employment web portal GetaJob.es, which has been developed in parallel and equipped with specific capabilities for collecting the data required by Promentor.
URI: http://hdl.handle.net/10553/72264
ISBN: 978-3-030-45092-2
ISSN: 0302-9743
DOI: 10.1007/978-3-030-45093-9_10
Fuente: Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science, v. 12013 LNCS, p. 75-82, (Enero 2020)
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.