Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72256
Campo DC Valoridioma
dc.contributor.authorMirza Rosca, Julia Claudiaen_US
dc.contributor.authorHerrera Santana, Eladio D.en_US
dc.contributor.authorDrob, S.en_US
dc.contributor.authorMartínez Ortigosa, Agurtzaneen_US
dc.date.accessioned2020-05-11T16:37:25Z-
dc.date.available2020-05-11T16:37:25Z-
dc.date.issued2011en_US
dc.identifier.isbn9781627482004en_US
dc.identifier.issn0272-9172en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72256-
dc.description.abstractTitanium possesses an excellent corrosion resistance in biological environments because the titanium dioxide formed on its surface is extremely stable. When aluminium and vanadium are added to titanium in small quantities, the alloy achieves considerably higher tensile properties than of pure titanium and this alloy is used in high stress-bearing situations. But these metals may also influence the chemostatic mechanisms that are involved in the attraction of biocells. V presence can be associated with potential cytotoxic effects and adverse tissue reactions. The alloys with aluminium and iron or with aluminium and niobium occur to be more suitable for implant applications: it possesses similar corrosion resistance and mechanical properties to those of titanium-aluminium-vanadium alloy; moreover, these alloys have no toxicity. In this paper, pure Ti, Ti-6Al-7Nb and Ti-6Al-4Fe with a nanostructured surface were studied. Data about mechanical behavior are presented. The mechanical behavior was determined using optical metallography, tensile strength and Vickers microhardness. For the electrochemical measurements a conventional three-electrode cell with a Pt grid as counter electrode and saturated calomel (SCE) as reference electrode was used. AC impedance data were obtained at open circuit potential using a PAR 263A potentiostat connected with a PAR 5210 lock-in amplifier. The ESEM and EDAX observation were carried out with an environmental scanning electronic microscope Fei XL30 ESEM with LaB6-cathode attached with an energy-dispersive electron probe X-ray analyzer (EDAX Sapphire). After 3 days of immersion in simulated body fluid the nucleation of the bone growth was observed on the implant surface. It resulted that the tested oxide films presented passivation tendency and a very good stability and no form of local corrosion was detected. The mechanical data confirm the presence of an outer porous passive layer and an inner compact and protective passive layer. EIS confirms the mechanical results. The thicknesses of these layers were measured. SEM photographs of the surface and EDX profiles for the samples illustrate the appearance of a microporous layer made up of an alkaline titanate hydrogel. The apatite-forming ability of the metal is attributed to the amorphous sodium titanate that is formed on the metal during the surface treatment. The results emphasized that the surface treatment increases the passive layer adhesion to the metal surface and improves the biocompatibility of the biomedical devices inducing the bone growth on the implant surface. © 2011 Materials Research Society.en_US
dc.languageengen_US
dc.relation.ispartofMaterials Research Society Symposium - Proceedingsen_US
dc.sourceMaterials Research Society Symposium Proceedings [ISSN 0272-9172], v. 1355, p. 22-27en_US
dc.subject330307 Tecnología de la corrosiónen_US
dc.subject331208 Propiedades de los materialesen_US
dc.subject.otherTitanium alloysen_US
dc.subject.otherCorrosion resistanceen_US
dc.subject.otherTien_US
dc.subject.otherTi-6Al-7Nben_US
dc.subject.otherTi-6Al-4Feen_US
dc.titleBehavior of two titanium alloys in simulated body fluiden_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2011 MRS Spring Meetingen_US
dc.identifier.doi10.1557/opl.2011.1137en_US
dc.identifier.scopus84879468667-
dc.contributor.authorscopusid8900758500-
dc.contributor.authorscopusid8900757900-
dc.contributor.authorscopusid12242252900-
dc.contributor.authorscopusid55776293500-
dc.description.lastpage27en_US
dc.description.firstpage22en_US
dc.relation.volume1355en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2011en_US
dc.identifier.conferenceidevents121434-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-0623-3318-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameMirza Rosca, Julia Claudia-
crisitem.event.eventsstartdate25-04-2011-
crisitem.event.eventsenddate29-04-2011-
Colección:Actas de congresos
Vista resumida

Visitas

122
actualizado el 31-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.