Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/71242
DC FieldValueLanguage
dc.contributor.authorCazzato, Darioen_US
dc.contributor.authorLeo, Marcoen_US
dc.contributor.authorCarcagni, Pierluigien_US
dc.contributor.authorDIstante, Cosimoen_US
dc.contributor.authorLorenzo-Navarro, Javieren_US
dc.contributor.authorVoos, Holgeren_US
dc.date.accessioned2020-04-04T05:06:40Z-
dc.date.available2020-04-04T05:06:40Z-
dc.date.issued2019en_US
dc.identifier.isbn978-1-7281-5024-6en_US
dc.identifier.issn2473-9936en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/71242-
dc.description.abstractThe possibility to automatically index human faces in videos could lead to a wide range of applications such as automatic video content analysis, data mining, on-demand streaming, etc. Most relevant works in the literature gather full indexing of videos in real scenarios by exploiting additional media features (e.g. audio and text) that are fused with facial appearance information to make the whole frameworks accurate and robust. Anyway, there exist some application contexts where multimedia data are either not available or reliable and for which available solutions are not well suited. This paper tries to explore this challenging research path by introducing a new fully computer vision based video indexing pipeline. The system has been validated and tested in two different typical scenarios where no-multimedia data could be exploited: broadcasted political video documentaries and healthcare therapies sessions about non-verbal skills.en_US
dc.languageengen_US
dc.relation.ispartofProceedings - 2019 International Conference On Computer Vision Workshop, Iccvw 2019en_US
dc.sourceProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, p. 2611-2618en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherAssistive technologyen_US
dc.subject.otherFace analysisen_US
dc.subject.otherVideo indexingen_US
dc.titleVideo indexing using face appearance and shot transition detectionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
dc.identifier.doi10.1109/ICCVW.2019.00319en_US
dc.identifier.scopus85082495493-
dc.contributor.authorscopusid55866556300-
dc.contributor.authorscopusid7006471658-
dc.contributor.authorscopusid23003296600-
dc.contributor.authorscopusid55884135100-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid6603280387-
dc.identifier.eissn2473-9944-
dc.description.lastpage2618-
dc.description.firstpage2611-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-7281-5023-9-
dc.utils.revisionen_US
dc.identifier.conferenceidevents121685
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.event.eventsstartdate27-10-2019-
crisitem.event.eventsenddate28-10-2019-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptSIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.departamentoInformática y Sistemas-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

27
checked on Jul 4, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.