Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70836
Campo DC Valoridioma
dc.contributor.authorSteinmetzer, Tobiasen_US
dc.contributor.authorBönninger, Ingriden_US
dc.contributor.authorReckhardt, Markusen_US
dc.contributor.authorReinhardt, Fritjofen_US
dc.contributor.authorErk, Dorelaen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-03-11T12:04:10Z-
dc.date.available2020-03-11T12:04:10Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/70836-
dc.description.abstractSensor-based systems for diagnosis or therapy support of motor dysfunctions need methodologies of automatically stride detection from movement sequences. In this proposal, we developed a stride detection system for daily life use. We compared mostly used algorithms min–max patterns, dynamic time warping, convolutional neural networks (CNN), and automatic framing using two data sets of 32 healthy and 28 Parkinson’s disease (PD) persons. We developed an insole with force and IMU sensors to record the gait data. The PD patients carried out the standardized time up and go test, and the healthy persons a daily life activities test (walking, sitting, standing, ascending and descending stairs). As an automatically stride detection process for daily life use, we propose a first stride detection using automatic framing, and after normalization and resampling data a CNN is used. A F1-score of 0.938 (recall 0.968, precision 0.910) for time up and go test and of 0.944 (recall 0.992, precision 0.901) for daily life activities test were obtained for CNN. Compared to the other detection methods, up to 6% F-measure improvement was shown.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications[ISSN 0941-0643], n. 32, p. 17857-17868en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherStride detectionen_US
dc.subject.otherGait analysisen_US
dc.subject.otherInertial sensorsen_US
dc.subject.otherParkinson’s diseaseen_US
dc.subject.otherValidationen_US
dc.subject.otherDynamic time warpingen_US
dc.subject.otherTime up and go testen_US
dc.subject.otherConvolutional neural networksen_US
dc.titleComparison of algorithms and classifiers for stride detection using wearablesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-019-04384-6en_US
dc.identifier.scopus85097123502-
dc.contributor.authorscopusid57204115368-
dc.contributor.authorscopusid56395430400-
dc.contributor.authorscopusid7801554279-
dc.contributor.authorscopusid57198038929-
dc.contributor.authorscopusid57204106522-
dc.contributor.authorscopusid6602376272-
dc.identifier.eissn1433-3058-
dc.description.lastpage17868en_US
dc.identifier.issue24-
dc.description.firstpage17857en_US
dc.relation.volume32en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 17-nov-2024

Visitas

90
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.