Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70832
Campo DC Valoridioma
dc.contributor.authorDelPozo-Banos, Marcosen_US
dc.contributor.authorJohn, Annen_US
dc.contributor.authorPetkov, Nicolaien_US
dc.contributor.authorBerridge, Damon Marken_US
dc.contributor.authorSouthern, Kateen_US
dc.contributor.authorLLoyd, Keithen_US
dc.contributor.authorJones, Carolineen_US
dc.contributor.authorSpencer, Sarahen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-03-11T11:12:44Z-
dc.date.available2020-03-11T11:12:44Z-
dc.date.issued2018en_US
dc.identifier.issn2368-7959en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/70832-
dc.description.abstractBackground: Each year, approximately 800,000 people die by suicide worldwide, accounting for 1–2 in every 100 deaths. It is always a tragic event with a huge impact on family, friends, the community and health professionals. Unfortunately, suicide prevention and the development of risk assessment tools have been hindered by the complexity of the underlying mechanisms and the dynamic nature of a person’s motivation and intent. Many of those who die by suicide had contact with health services in the preceding year but identifying those most at risk remains a challenge. Objective: To explore the feasibility of using artificial neural networks with routinely collected electronic health records to support the identification of those at high risk of suicide when in contact with health services. Methods: Using the Secure Anonymised Information Linkage Databank UK, we extracted the data of those who died by suicide between 2001 and 2015 and paired controls. Looking at primary (general practice) and secondary (hospital admissions) electronic health records, we built a binary feature vector coding the presence of risk factors at different times prior to death. Risk factors included: general practice contact and hospital admission; diagnosis of mental health issues; injury and poisoning; substance misuse; maltreatment; sleep disorders; and the prescription of opiates and psychotropics. Basic artificial neural networks were trained to differentiate between the suicide cases and paired controls. We interpreted the output score as the estimated suicide risk. System performance was assessed with 10x10-fold repeated cross-validation, and its behavior was studied by representing the distribution of estimated risk across the cases and controls, and the distribution of factors across estimated risks. Results: We extracted a total of 2604 suicide cases and 20 paired controls per case. Our best system attained a mean error rate of 26.78% (SD 1.46; 64.57% of sensitivity and 81.86% of specificity). While the distribution of controls was concentrated around estimated risks < 0.5, cases were almost uniformly distributed between 0 and 1. Prescription of psychotropics, depression and anxiety, and self-harm increased the estimated risk by ~0.4. At least 95% of those presenting these factors were identified as suicide cases. Conclusions: Despite the simplicity of the implemented system, the proposed methodology obtained an accuracy like other published methods based on specialized questionnaire generated data. Most of the errors came from the heterogeneity of patterns shown by suicide cases, some of which were identical to those of the paired controls. Prescription of psychotropics, depression and anxiety, and self-harm were strongly linked with higher estimated risk scores, followed by hospital admission and long-term drug and alcohol misuse. Other risk factors like sleep disorders and maltreatment had more complex effects.en_US
dc.languageengen_US
dc.relation.ispartofJmir Mental Healthen_US
dc.sourceJmir Mental Health [ISSN 2368-7959], v. 5 (2), (Junio 2018)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherSuicide prevention-
dc.subject.otherElectronic health records-
dc.subject.otherRisk assessment-
dc.subject.otherRoutine data-
dc.subject.otherMachine learning-
dc.subject.otherArtificial neural networks-
dc.titleUsing Neural Networks with Routine Health Records to Identify Suicide Risk: Feasibility Studyen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.2196/10144en_US
dc.identifier.isi000449366700001-
dc.identifier.issue2-
dc.description.firstpagee10144en_US
dc.relation.volume5en_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículoen_US
dc.contributor.daisngid2996557-
dc.contributor.daisngid66646-
dc.contributor.daisngid206839-
dc.contributor.daisngid29076722-
dc.contributor.daisngid29051297-
dc.contributor.daisngid460462-
dc.contributor.daisngid8453166-
dc.contributor.daisngid2513588-
dc.contributor.daisngid265761-
dc.description.numberofpages16en_US
dc.utils.revision-
dc.contributor.wosstandardWOS:DelPozo-Banos, M-
dc.contributor.wosstandardWOS:John, A-
dc.contributor.wosstandardWOS:Petkov, N-
dc.contributor.wosstandardWOS:Berridge, DM-
dc.contributor.wosstandardWOS:Southern, K-
dc.contributor.wosstandardWOS:LLoyd, K-
dc.contributor.wosstandardWOS:Jones, C-
dc.contributor.wosstandardWOS:Spencer, S-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdateJunio 2018en_US
dc.identifier.ulpgces
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Adobe PDF (589,59 kB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

30
actualizado el 10-nov-2024

Visitas

60
actualizado el 30-sep-2023

Descargas

332
actualizado el 30-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.