Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70166
Título: A Novel Hyperspectral Target Detection Algorithm for Real-Time Applications with Push-Broom Scanners
Autores/as: Díaz Martín, María 
Guerra, Raul 
Lopez, Sebastian 
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Hyperspectral Imaging
Orthogonalization
Push-Broom Sensor
Real-Time Applications
Target Detection
Fecha de publicación: 2019
Publicación seriada: Workshop On Hyperspectral Image And Signal Processing, Evolution In Remote Sensing
Conferencia: 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2019 
Resumen: In this paper, we propose a novel method for the detection of desired targets in hyperspectral images which has been specially designed for being easily parallelizable in hardware devices for applications under real-time constraints, specially those which involve push-broom scanners. Concretely, the proposed methodology independently processes blocks of pixels as soon as they are sensed, reducing the amount of data to be stored and processed on-board and hence, speeding-up the executed process and fulfilling the causality requirements imposed by line-by-line applications. Based on a modified version of the well-known Gram-Schmidt orthogonalization method, our proposal selects a set of undesired signatures in order to later identify those spectral wavelengths which better distinguish the desired target to be detected from other entities present in the scene. With it, we achieve to perform a dimensional reduction strategy which compresses the acquired image onto a lower-dimensional feature space that maximizes the difference between both desired and undesired targets. We have applied the proposed methodology to two real hyperspectral images. The results obtained support the benefits of our proposal, being able to detect targets regardless of the amount of area covered by them.
URI: http://hdl.handle.net/10553/70166
ISBN: 9781728152943
ISSN: 2158-6276
DOI: 10.1109/WHISPERS.2019.8920959
Fuente: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing [ISSN 2158-6276],v. 2019-September
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 24-nov-2024

Visitas

143
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.