Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70157
Título: Introduction to the special issue on online learning for big-data driven transportation and mobility
Autores/as: Del Ser, Javier
Sanchez-Medina, Javier J. 
Vlahogianni, Eleni I.
Clasificación UNESCO: 120304 Inteligencia artificial
332703 Sistemas de transito urbano
Fecha de publicación: 2019
Publicación seriada: IEEE Transactions on Intelligent Transportation Systems 
Resumen: In the last years, the arrival and progressively gained maturity of technological paradigms such as Connected Vehicles, the Internet of Things, Sensor Networks, Urban Computing, Smart Cities, Cloud Computing, Edge Computing, Big Data and others alike have ignited the role historically played by data-based learning techniques to levels never seen before. This sharp increase has been particularly noticed in the design and management of intelligent systems for transportation and mobility, as processes, services and applications deployed in these systems are fed with data substrates captured at unprecedented rates and scales. Legacy sensing equipment installed on the roads' infrastructure (e.g., induction loops and cameras) are nowadays complemented by alternative means to sense the transportation and mobility context of interest in real time and ubiquitously, as can be exemplified by data collected in a crowd-sourced way by using ad-hoc smart applications, as well as floating car data and/or social media.
URI: http://hdl.handle.net/10553/70157
ISSN: 1524-9050
DOI: 10.1109/TITS.2019.2955548
Fuente: IEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 20 (12), p. 4621-4623
Colección:Comentario
Vista completa

Citas SCOPUSTM   

7
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 15-dic-2024

Visitas

112
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.