Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70157
Título: | Introduction to the special issue on online learning for big-data driven transportation and mobility | Autores/as: | Del Ser, Javier Sanchez-Medina, Javier J. Vlahogianni, Eleni I. |
Clasificación UNESCO: | 120304 Inteligencia artificial 332703 Sistemas de transito urbano |
Fecha de publicación: | 2019 | Publicación seriada: | IEEE Transactions on Intelligent Transportation Systems | Resumen: | In the last years, the arrival and progressively gained maturity of technological paradigms such as Connected Vehicles, the Internet of Things, Sensor Networks, Urban Computing, Smart Cities, Cloud Computing, Edge Computing, Big Data and others alike have ignited the role historically played by data-based learning techniques to levels never seen before. This sharp increase has been particularly noticed in the design and management of intelligent systems for transportation and mobility, as processes, services and applications deployed in these systems are fed with data substrates captured at unprecedented rates and scales. Legacy sensing equipment installed on the roads' infrastructure (e.g., induction loops and cameras) are nowadays complemented by alternative means to sense the transportation and mobility context of interest in real time and ubiquitously, as can be exemplified by data collected in a crowd-sourced way by using ad-hoc smart applications, as well as floating car data and/or social media. | URI: | http://hdl.handle.net/10553/70157 | ISSN: | 1524-9050 | DOI: | 10.1109/TITS.2019.2955548 | Fuente: | IEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 20 (12), p. 4621-4623 |
Colección: | Comentario |
Citas SCOPUSTM
7
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 15-dic-2024
Visitas
112
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.