Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70157
Campo DC Valoridioma
dc.contributor.authorDel Ser, Javieren_US
dc.contributor.authorSanchez-Medina, Javier J.en_US
dc.contributor.authorVlahogianni, Eleni I.en_US
dc.date.accessioned2020-02-05T12:52:46Z-
dc.date.available2020-02-05T12:52:46Z-
dc.date.issued2019en_US
dc.identifier.issn1524-9050en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/70157-
dc.description.abstractIn the last years, the arrival and progressively gained maturity of technological paradigms such as Connected Vehicles, the Internet of Things, Sensor Networks, Urban Computing, Smart Cities, Cloud Computing, Edge Computing, Big Data and others alike have ignited the role historically played by data-based learning techniques to levels never seen before. This sharp increase has been particularly noticed in the design and management of intelligent systems for transportation and mobility, as processes, services and applications deployed in these systems are fed with data substrates captured at unprecedented rates and scales. Legacy sensing equipment installed on the roads' infrastructure (e.g., induction loops and cameras) are nowadays complemented by alternative means to sense the transportation and mobility context of interest in real time and ubiquitously, as can be exemplified by data collected in a crowd-sourced way by using ad-hoc smart applications, as well as floating car data and/or social media.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Intelligent Transportation Systemsen_US
dc.sourceIEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 20 (12), p. 4621-4623en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject332703 Sistemas de transito urbanoen_US
dc.titleIntroduction to the special issue on online learning for big-data driven transportation and mobilityen_US
dc.typeinfo:eu-repo/semantics/annotationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TITS.2019.2955548-
dc.identifier.scopus85077218649-
dc.identifier.isi000505522400029-
dc.contributor.authorscopusid9737598300-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid8680724400-
dc.identifier.eissn1558-0016-
dc.description.lastpage4623en_US
dc.identifier.issue12-
dc.description.firstpage4621en_US
dc.relation.volume20en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Comentarioen_US
dc.contributor.daisngid961099-
dc.contributor.daisngid1882101-
dc.contributor.daisngid30709587-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Del Ser, J-
dc.contributor.wosstandardWOS:Sanchez-Medina, JJ-
dc.contributor.wosstandardWOS:Vlahogianni, EI-
dc.date.coverdateDiciembre 2019en_US
dc.identifier.ulpgcen_US
dc.description.sjr1,897
dc.description.jcr6,319
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Colección:Comentario
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.