Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70157
DC FieldValueLanguage
dc.contributor.authorDel Ser, Javieren_US
dc.contributor.authorSanchez-Medina, Javier J.en_US
dc.contributor.authorVlahogianni, Eleni I.en_US
dc.date.accessioned2020-02-05T12:52:46Z-
dc.date.available2020-02-05T12:52:46Z-
dc.date.issued2019en_US
dc.identifier.issn1524-9050en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/70157-
dc.description.abstractIn the last years, the arrival and progressively gained maturity of technological paradigms such as Connected Vehicles, the Internet of Things, Sensor Networks, Urban Computing, Smart Cities, Cloud Computing, Edge Computing, Big Data and others alike have ignited the role historically played by data-based learning techniques to levels never seen before. This sharp increase has been particularly noticed in the design and management of intelligent systems for transportation and mobility, as processes, services and applications deployed in these systems are fed with data substrates captured at unprecedented rates and scales. Legacy sensing equipment installed on the roads' infrastructure (e.g., induction loops and cameras) are nowadays complemented by alternative means to sense the transportation and mobility context of interest in real time and ubiquitously, as can be exemplified by data collected in a crowd-sourced way by using ad-hoc smart applications, as well as floating car data and/or social media.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Intelligent Transportation Systemsen_US
dc.sourceIEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 20 (12), p. 4621-4623en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject332703 Sistemas de transito urbanoen_US
dc.titleIntroduction to the special issue on online learning for big-data driven transportation and mobilityen_US
dc.typeinfo:eu-repo/semantics/annotationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TITS.2019.2955548-
dc.identifier.scopus85077218649-
dc.identifier.isi000505522400029-
dc.contributor.authorscopusid9737598300-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid8680724400-
dc.identifier.eissn1558-0016-
dc.description.lastpage4623en_US
dc.identifier.issue12-
dc.description.firstpage4621en_US
dc.relation.volume20en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Comentarioen_US
dc.contributor.daisngid961099-
dc.contributor.daisngid1882101-
dc.contributor.daisngid30709587-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Del Ser, J-
dc.contributor.wosstandardWOS:Sanchez-Medina, JJ-
dc.contributor.wosstandardWOS:Vlahogianni, EI-
dc.date.coverdateDiciembre 2019en_US
dc.identifier.ulpgcen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptIUCTC: Centro de Innovación para la Sociedad de la Información-
crisitem.author.deptIU de Ciencias y Tecnologías Cibernéticas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Ciencias y Tecnologías Cibernéticas-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Comentario
Show simple item record

Page view(s)

40
checked on May 10, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.