Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69996
Campo DC Valoridioma
dc.contributor.authorSrivastava, Neeleshen_US
dc.contributor.authorBhatnagar, Mansien_US
dc.contributor.authorYadav, Anjalien_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2020-02-05T12:51:49Z-
dc.date.available2020-02-05T12:51:49Z-
dc.date.issued2019en_US
dc.identifier.isbn9781450360852en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69996-
dc.description.abstractHeart diseases are one of the most common diseases these days. The common cardiovascular diseases are usually being diagnosed by the manual stethoscope by doctor. In many developing countries doctors are not available in primary health care centers in rural areas. This paper proposes a method to diagnose and detect the abnormal heart frequencies using discriminatory features of the heart sound by machine learning. Mel frequency cepstral coefficients study has been done to excerpt the features from the heart sound, which increases the sensitivity of the results. Support Vector Machine is used to train and test the features extracted. The proposed method uses the Butterworth filter for pre-processing of noise removal to clean the signal. Time complexity has been decreased and due to the logic implemented the device database can get update by itself as far as it gets in use and doesn’t need human intervention making it completely automatic. The proposed method is tested on a comprehensive database of heart sounds with different non-overlapping testing sets. The proposed method achieved the best accuracy of 95 % during classification process. The experiment results indicate that the proposed method is efficient for classification of healthy/unhealthy heart sounds and computationally cheap making it suitable for real time applications.en_US
dc.languageengen_US
dc.relation.ispartofAcm International Conference Proceeding Seriesen_US
dc.sourceACM International Conference Proceeding Seriesen_US
dc.subject320501 Cardiologíaen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherButterworth Filteren_US
dc.subject.otherCardiovascularen_US
dc.subject.otherCepstrumen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherMfccsen_US
dc.subject.otherSupport Vector Machineen_US
dc.titleMachine learning based improved automatic diagnosis of cardiac disorderen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2nd International Conference on Applications of Intelligent Systems, APPIS 2019en_US
dc.identifier.doi10.1145/3309772.3309783en_US
dc.identifier.scopus85070551642-
dc.identifier.isi000519037800011-
dc.contributor.authorscopusid57210390551-
dc.contributor.authorscopusid57210390217-
dc.contributor.authorscopusid57195513394-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Srivastava, N-
dc.contributor.wosstandardWOS:Bhatnagar, M-
dc.contributor.wosstandardWOS:Yadav, A-
dc.contributor.wosstandardWOS:Dutta, MK-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.identifier.conferenceidevents121188-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate07-01-2019-
crisitem.event.eventsenddate09-01-2019-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
miniatura
Adobe PDF (505,6 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.