Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69882
Título: | Equalizer for an IR-wireless LAN using RBF neural networks | Autores/as: | Pérez-Jiménez, R. Martín-Bernardo, J. Melián, V. M. Ruiz-Alzola, J. Betancor, M. J. |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Wireless LAN | Fecha de publicación: | 1993 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | Conference on Local Computer Networks | Conferencia: | 18th Conference on Local Computer Networks, LCN 1993 | Resumen: | The application of a RBF (radial basis function) neural network to an adaptive equalizer at the receiver of a wireless IR-LAN is considered. Fixing the decision threshold and classifying the received binary signals are the main functions of the RBF. The general problem of equalization binary signals, passed through a dispersive channel and corrupted with noise, is briefly described. The characterization of the receiver and the effects of both Gaussian and shot noise over the signals are studied. A possible architecture for the equalizer and a comparison with other classical structures (multilayer perceptron and linear transversal equalizer), as well as simulation results are given. Considerations about the way of reducing computational complexity are proposed. | URI: | http://hdl.handle.net/10553/69882 | ISBN: | 0-8186-4510-5 | ISSN: | 0742-1303 | DOI: | 10.1109/LCN.1993.591261 | Fuente: | 18th Conference on Local Computer Networks, Minneapolis, MN, USA, 1993, p. 461-466 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.