Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/69802
Title: | Evaluation of hyperspectral classification maps in heterogeneous ecosystem | Authors: | Ibarrola-Ulzurrun, Edurne Marcello, Javier Gonzalo Martin,Consuelo Chanussot, Jocelyn |
UNESCO Clasification: | 220990 Tratamiento digital. Imágenes | Keywords: | Binary Partition Tree Casi Sensor Ecosystem Management Hyperspectral Imagery Support Vector Machine |
Issue Date: | 2018 | Project: | Procesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables. | Journal: | IEEE International Geoscience and Remote Sensing Symposium proceedings | Conference: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018) | Abstract: | Ecosystem management and monitoring are essential to preserve natural resources. Hyperspectral imagery (HSI) is a useful tool to obtain accurate classification maps, providing significant level of detail. Thus, traditional and novel methodologies based on pixel and object classification approaches are compared and evaluated in a homogeneous and mixed vulnerable ecosystem. Considering the challenging ecosystem, all classifications successfully resulted in high OA (higher than 82%), showing that HSI is very useful providing accurate vegetation maps to evaluate and monitor the ecosystems in a faster and economic way. | URI: | http://hdl.handle.net/10553/69802 | ISBN: | 9781538671504 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS.2018.8518308 | Source: | IEEE International Geoscience and Remote Sensing Symposium proceedings [2153-6996],v. 2018-July, p. 5764-5767 |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
1
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
1
checked on Feb 25, 2024
Page view(s)
94
checked on Jun 8, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.