Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69746
Campo DC Valoridioma
dc.contributor.authorMucha, Janen_US
dc.contributor.authorGalaz, Zoltanen_US
dc.contributor.authorMekyska, Jirien_US
dc.contributor.authorKiska, Tomasen_US
dc.contributor.authorZvoncak, Vojtechen_US
dc.contributor.authorSmekal, Zdeneken_US
dc.contributor.authorEliasova, Ilonaen_US
dc.contributor.authorMrackova, Martinaen_US
dc.contributor.authorKostalova, Milenaen_US
dc.contributor.authorRektorova, Irenaen_US
dc.contributor.authorFaundez-Zanuy, Marcosen_US
dc.contributor.authorAlonso-Hernandez, Jesus B.en_US
dc.date.accessioned2020-02-05T12:49:48Z-
dc.date.accessioned2020-11-11T10:06:35Z-
dc.date.available2020-02-05T12:49:48Z-
dc.date.available2020-11-11T10:06:35Z-
dc.date.issued2017en_US
dc.identifier.isbn9781509039821en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69746-
dc.description.abstractUp to 90% of patients with Parkinson's disease (PD) suffer from hypokinetic dysarthria (HD). In this work, we analysed the power of conventional speech features quantifying imprecise articulation, dysprosody, speech dysfluency and speech quality deterioration extracted from a specialized poem recitation task to discriminate dysarthric and healthy speech. For this purpose, 152 speakers (53 healthy speakers, 99 PD patients) were examined. Only mildly strong correlation between speech features and clinical status of the speakers was observed. In case of univariate classification analysis, sensitivity of 62.63% (imprecise articulation), 61.62% (dysprosody), 71.72% (speech dysfluency) and 59.60% (speech quality deterioration) was achieved. Multivariate classification analysis improved the classification performance. Sensitivity of 83.42% using only two features describing imprecise articulation and speech quality deterioration in HD was achieved. We showed the promising potential of the selected speech features and especially the use of poem recitation task to quantify and identify HD in PD.en_US
dc.languageengen_US
dc.relation.ispartofInternational Conference On Telecommunications And Signal Processing, Tsp 2017en_US
dc.source2017 40th International Conference on Telecommunications and Signal Processing, TSP 2017,v. 2017-January, p. 739-742en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherAcoustic Analysisen_US
dc.subject.otherBinary Classificationen_US
dc.subject.otherHypokinetic Dysarthriaen_US
dc.subject.otherParkinson’S Diseaseen_US
dc.subject.otherPoem Recitationen_US
dc.titleIdentification of hypokinetic dysarthria using acoustic analysis of poem recitationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference40th International Conference on Telecommunications and Signal Processing, TSP 2017en_US
dc.identifier.doi10.1109/TSP.2017.8076086en_US
dc.identifier.scopus85042931607-
dc.identifier.isi000425229000157-
dc.contributor.authorscopusid57201029686-
dc.contributor.authorscopusid56888706700-
dc.contributor.authorscopusid35746344400-
dc.contributor.authorscopusid57192544834-
dc.contributor.authorscopusid57201027097-
dc.contributor.authorscopusid36855362600-
dc.contributor.authorscopusid55524322100-
dc.contributor.authorscopusid24598046000-
dc.contributor.authorscopusid15044536700-
dc.contributor.authorscopusid6603054591-
dc.contributor.authorscopusid6701452104-
dc.contributor.authorscopusid57195466969-
dc.description.lastpage742en_US
dc.description.firstpage739en_US
dc.relation.volume2017-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid223658-
dc.contributor.daisngid3828823-
dc.contributor.daisngid1102140-
dc.contributor.daisngid7689834-
dc.contributor.daisngid9955641-
dc.contributor.daisngid355338-
dc.contributor.daisngid2834636-
dc.contributor.daisngid2427358-
dc.contributor.daisngid1551952-
dc.contributor.daisngid157722-
dc.contributor.daisngid259157-
dc.contributor.daisngid29084685-
dc.description.numberofpages4en_US
dc.identifier.eisbn978-1-5090-3982-1-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mucha, J-
dc.contributor.wosstandardWOS:Galaz, Z-
dc.contributor.wosstandardWOS:Mekyska, J-
dc.contributor.wosstandardWOS:Kiska, T-
dc.contributor.wosstandardWOS:Zvoncak, V-
dc.contributor.wosstandardWOS:Smekal, Z-
dc.contributor.wosstandardWOS:Eliasova, I-
dc.contributor.wosstandardWOS:Mrackova, M-
dc.contributor.wosstandardWOS:Kostalova, M-
dc.contributor.wosstandardWOS:Rektorova, I-
dc.contributor.wosstandardWOS:Faundez-Zanuy, M-
dc.contributor.wosstandardWOS:Alonso-Hernandez, JB-
dc.date.coverdateOctubre 2017en_US
dc.identifier.conferenceidevents121083-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate05-07-2017-
crisitem.event.eventsenddate07-07-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 25-feb-2024

Visitas

101
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.