Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69319
Campo DC Valoridioma
dc.contributor.authorCasado, Alberto-
dc.contributor.authorGuerra Guillén, Santiago Ramón-
dc.contributor.authorPlácido Suárez, José-
dc.date.accessioned2020-01-24T10:18:57Z-
dc.date.available2020-01-24T10:18:57Z-
dc.date.issued2019-
dc.identifier.issn2218-2004-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/69319-
dc.description.abstractThe Wigner formalism in the Heisenberg picture constitutes a bridge that connects Quantum Optics to Stochastic Optics. The vacuum field appears explicitly in the formalism, and the wavelike aspects of light are emphasised. In addition, the zeropoint intensity as a threshold for detection is a common denominator in both theories. In this paper, after summarising the basic rules of the Wigner approach and its application to parametric down-conversion, some new results are presented that delve into the physical meaning of the zeropoint field in optical quantum communication. Specifically, the relationship between Bell-state distinguishability and the number of sets of zeropoint modes that take part in the experiment is analysed in terms of the coupling between the phases of the different fields involved and the subtraction of the zeropoint intensity at the detectors. Additionally, the connection between the compatibility theorem in quantum cryptography and zeropoint field is stressed.-
dc.languageeng-
dc.relation.ispartofAtoms-
dc.sourceAtoms [ISSN 2218-2004], v 7 (3), 76, (Agosto 2019)-
dc.subject3311 tecnología de la instrumentación-
dc.subject.otherParametric Down-Conversion-
dc.subject.otherRepresentation-
dc.subject.otherState-
dc.subject.otherDownconversion-
dc.subject.otherFluctuations-
dc.subject.otherEntanglement-
dc.subject.otherSpectrum-
dc.titleFrom Stochastic Optics to the Wigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/atoms7030076-
dc.identifier.isi000487984900029-
dc.identifier.eissn2218-2004-
dc.identifier.issue3-
dc.relation.volume7-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid3108313-
dc.contributor.daisngid4097171-
dc.contributor.daisngid4848449-
dc.description.notasThis article belongs to the Special Issue Stochastic Electrodynamics-
dc.description.numberofpages22-
dc.utils.revision-
dc.contributor.wosstandardWOS:Casado, A-
dc.contributor.wosstandardWOS:Guerra, S-
dc.contributor.wosstandardWOS:Placido, J-
dc.date.coverdateAgosto 2019-
dc.identifier.ulpgc-
dc.description.sjr0,376
dc.description.sjrqQ3
dc.description.esciESCI
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Didácticas Específicas-
crisitem.author.orcid0000-0002-9918-297X-
crisitem.author.orcid0000-0001-6801-735X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameGuerra Guillén, Santiago Ramón-
crisitem.author.fullNamePlácido Suarez, José-
Colección:Artículos
miniatura
From Stochastic Optics to the Wigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments
Adobe PDF (453,83 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.