Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/64233
Campo DC Valoridioma
dc.contributor.authorShanawaz Mostafa, Sheikh-
dc.contributor.authorMendonça, Fábio-
dc.contributor.authorRavelo-García, Antonio G.-
dc.contributor.authorMorgado-Dias, Fernando-
dc.date.accessioned2020-01-22T14:41:42Z-
dc.date.available2020-01-22T14:41:42Z-
dc.date.issued2019-
dc.identifier.issn1424-8220-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/64233-
dc.description.abstractSleep apnea is a sleep related disorder that significantly affects the population. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score. Numerous researchers have proposed and implemented automatic scoring processes to address these issues, based on fewer sensors and automatic classification algorithms. Deep learning is gaining higher interest due to database availability, newly developed techniques, the possibility of producing machine created features and higher computing power that allows the algorithms to achieve better performance than the shallow classifiers. Therefore, the sleep apnea research has currently gained significant interest in deep learning. The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks. The employed signals, sensors, databases and implementation challenges were also considered. A systematic search was conducted on five indexing services from 2008–2018. A total of 255 papers were found and 21 were selected by considering the inclusion and exclusion criteria, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.-
dc.languageeng-
dc.relation.ispartofSensors-
dc.sourceSensors (Switzerland) [ISSN 1424-8220], v. 19 (22), 4934-
dc.subject6105 Evaluación y diagnóstico en psicología-
dc.subject.otherCNN-
dc.subject.otherDeep learning-
dc.subject.otherSleep apnea-
dc.subject.otherSensors for sleep apnea-
dc.subject.otherRNN-
dc.subject.otherDeep neural network-
dc.titleA systematic review of detecting sleep apnea using deep learning-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.3390/s19224934-
dc.identifier.scopus85074857183-
dc.identifier.isi000503381500113-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid57200602527-
dc.identifier.eissn1424-8220-
dc.identifier.issue4934-
dc.relation.volume19-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid4069296-
dc.contributor.daisngid6442981-
dc.contributor.daisngid1986395-
dc.contributor.daisngid1189663-
dc.description.numberofpages26-
dc.utils.revision-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.date.coverdateNoviembre 2019-
dc.identifier.ulpgces
dc.description.sjr0,653
dc.description.jcr3,275
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
miniatura
pdf
Adobe PDF (1,7 MB)
Vista resumida

Citas SCOPUSTM   

119
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

89
actualizado el 15-dic-2024

Visitas

90
actualizado el 21-sep-2024

Descargas

118
actualizado el 21-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.