Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60191
Título: Video categorisation mimicking text mining
Autores/as: Ortega-Leon, Cristian
Marín Reyes, Pedro A. 
Lorenzo-Navarro, Javier 
Castrillon-Santana, Modesto 
Sánchez-Nielsen, Elena
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Video classification
Text classification
Text mining
Semantic video tagging
Fecha de publicación: 2019
Editor/a: Springer 
Proyectos: Identificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 15th International Work-Conference on Artificial Neural Networks (IWANN) 
15th International Work-Conference on Artificial Neural Networks, IWANN 2019 
Resumen: With the rapid growth of online videos on the Web, there is an increasing research interest in automatic categorisation of videos. It is essential for multimedia tasks in order to facilitate indexing, search and retrieval of available video files on the Web. In this paper, we propose a different technique for the video categorisation problem using only visual information. Entity labels extracted from each frame using a deep learning network, mimic words giving rise to manage the video classification task as a text mining problem. Experimental evaluation on two widely used datasets confirms that the proposing approach fits perfectly to video classification problems. Our approach achieves 64.30% in terms of Mean Average Precision (mAP) in CCV dataset, above other approaches that make use of both visual and audio information.
URI: http://hdl.handle.net/10553/60191
ISBN: 978-3-030-20517-1
ISSN: 0302-9743
DOI: 10.1007/978-3-030-20518-8_25
Fuente: Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11507LNCS, p. 292-301
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

1
actualizado el 10-nov-2024

Visitas

113
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.