Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/60191
Title: | Video categorisation mimicking text mining | Authors: | Ortega-Leon, Cristian Marín Reyes, Pedro A. Lorenzo-Navarro, Javier Castrillon-Santana, Modesto Sánchez-Nielsen, Elena |
UNESCO Clasification: | 120304 Inteligencia artificial | Keywords: | Video classification Text classification Text mining Semantic video tagging |
Issue Date: | 2019 | Publisher: | Springer | Project: | Identificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales. | Journal: | Lecture Notes in Computer Science | Conference: | 15th International Work-Conference on Artificial Neural Networks (IWANN) 15th International Work-Conference on Artificial Neural Networks, IWANN 2019 |
Abstract: | With the rapid growth of online videos on the Web, there is an increasing research interest in automatic categorisation of videos. It is essential for multimedia tasks in order to facilitate indexing, search and retrieval of available video files on the Web. In this paper, we propose a different technique for the video categorisation problem using only visual information. Entity labels extracted from each frame using a deep learning network, mimic words giving rise to manage the video classification task as a text mining problem. Experimental evaluation on two widely used datasets confirms that the proposing approach fits perfectly to video classification problems. Our approach achieves 64.30% in terms of Mean Average Precision (mAP) in CCV dataset, above other approaches that make use of both visual and audio information. | URI: | http://hdl.handle.net/10553/60191 | ISBN: | 978-3-030-20517-1 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-030-20518-8_25 | Source: | Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11507LNCS, p. 292-301 |
Appears in Collections: | Capítulo de libro |
SCOPUSTM
Citations
1
checked on Dec 8, 2024
Page view(s)
113
checked on Mar 2, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.