Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60173
Título: | On the application of a recurrent neural network for rainfall quantification based on the received signal from microwave Links | Autores/as: | Guerra-Moreno, Iván Navarro-Mesa, Juan L. Ravelo-Garcia, Antonio G. Suárez Araujo, Carmen Paz |
Clasificación UNESCO: | 120304 Inteligencia artificial 25 Ciencias de la tierra y del espacio |
Palabras clave: | Recurrent neural networks Pattern recognition Rain detection Rainfall quantification Received signal strength, et al. |
Fecha de publicación: | 2019 | Editor/a: | Springer | Proyectos: | Sistema de Vigilancia Meteorológica para el Seguimiento de Riesgos Medioambientales ItemCrisRefDisplayStrategy.project.deleted.icon | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 15th International Work-Conference on Artificial Neural Networks (IWANN) 15th International Work-Conference on Artificial Neural Networks, IWANN 2019 |
Resumen: | The detection and quantification of rainfall is of paramount importance in many application contexts. The research work we present here is devoted to design a system to detect meteorological phenomena in situations of risk. Particularly, we extend the usage of systems designed for other specific purposes incorporating them weather observation as a new service. We investigate how machine learning techniques can be used to design rain detection and quantification algorithms that learn directly from data and become robust enough to perform detection under changing conditions over time. We show that Recurrent Neural Networks are well suited for rainfall quantification, and no precise knowledge of the underlying propagation model is necessary. We propose a recurrent neural architecture with two layers. A first layer acts as a detector-quantifier and it is trained using known precipitations from near rain gauges. The second layer plays the role of calibration that transforms previous levels into rainfall quantitation values. A very important aspect of our proposal is the feature extraction module, which allow a reliable detection and accurate quantification. We study several options for extracting the most discriminative features associated to rain and no rain events. We show that our system can detect and quantify rain-no rain events with promising results in terms of sensitivity (76,6%), specificity (97,0%) and accuracy (96,5%). The histograms of error and the accumulated rain rates show good performance, as well. | URI: | http://hdl.handle.net/10553/60173 | ISBN: | 978-3-030-20520-1 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-030-20521-8_4 | Fuente: | Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, v. 11506 LNCS, p. 39-51 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
140
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.