Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60054
Campo DC Valoridioma
dc.contributor.authorYadav, Anjalien_US
dc.contributor.authorSingh, Anushikhaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2020-01-10T11:03:01Z-
dc.date.available2020-01-10T11:03:01Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/60054-
dc.description.abstractCardiovascular diseases are one of the most fatal diseases across the globe. Clinically, conventional stethoscope is used to check the medical condition of a human heart. Only a trained medical professional can understand and interpret the heart auscultations clinically. This paper presents a machine learning-based automatic classification system based on heart sounds to diagnose cardiac disorders. The proposed framework involves strategic processing and framing of heart sound to extract discriminatory features for machine learning. The most prominent features are selected and used to train a supervised classifier for automatic detection of cardiac diseases. The biological abnormalities disturbing the physical functioning of the heart cause variations in the auscultations, which is strategically used in terms of some discriminatory features for machine learning-based automatic classification. The proposed method achieved 97.78% accuracy with the equal error rate of 2.22% for abnormal and normal heart sound classification. The experimental results exhibit that the performance of the proposed method in proper diagnosis of the cardiac diseases is high in terms of accuracy and has low error rate which makes the proposed algorithm suitable for real-time applications.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications [ISSN 0941-0643], n. 32, p. 17843-17856en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherBody auscultationen_US
dc.subject.otherCardiac diseaseen_US
dc.subject.otherMachine learningen_US
dc.subject.otherAutomatic classificationen_US
dc.subject.otherP valueen_US
dc.subject.otherFeature extractionen_US
dc.titleMachine learning-based classification of cardiac diseases from PCG recorded heart soundsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-019-04547-5en_US
dc.identifier.scopus85076572612-
dc.identifier.isi000491552400009-
dc.contributor.authorscopusid57195513394-
dc.contributor.authorscopusid55885045200-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.identifier.eissn1433-3058-
dc.identifier.issue24-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2472523-
dc.contributor.daisngid802071-
dc.contributor.daisngid35026383-
dc.contributor.daisngid265761-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Yadav, A-
dc.contributor.wosstandardWOS:Singh, A-
dc.contributor.wosstandardWOS:Dutta, MK-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.