Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60014
Título: Chlorophyll-A estimation from remote sensing data of sea surface temperature and aerosol optical thickness through a shallow neural network
Autores/as: Rodríguez Esparragón, Dionisio 
Marrero Betancort, Nerea
Marcello, Javier 
Hernandez-Leon, Santiago 
Clasificación UNESCO: 250616 Teledetección (Geología)
251001 Oceanografía biológica
Palabras clave: Ocean temperature
Neural networks
Sea surface
Temperature sensors
Time series analysis, et al.
Fecha de publicación: 2019
Proyectos: Análisis de Series Temporales de Parámetros Atmosféricos de Teledetección Por 
Conferencia: 2019 International Conference on Engineering Applications, ICEA 2019 
Resumen: The oceans cover most of the Earth surface, being therefore essential elements of the environmental balance of our planet. In this sense, the prediction of global change scenarios that may affect them is an issue of high scientific and social relevance. One of the elements that indicates the quality of the water is the concentration of Chlorophyll-a. It is well known that Chlorophyll-a is related to the sea surface temperature and other variables such as the presence of nutrients and wind. All of them have been monitored with remote sensing satellites for more than a decade ago. Thus, researchers have available temporary series of these data. In this work, the prediction of Chlorophyll-a concentration is addressed from data on sea surface temperature and the aerosol optical thickness. For this, a shallow neuronal network is designed and trained, whose performance is contrasted with other approaches. The results show that the tested methodology can be used to model predictors with the discussed climate variables.
URI: http://hdl.handle.net/10553/60014
DOI: 10.1109/CEAP.2019.8883506
Fuente: 2019 International Conference on Engineering Applications, ICEA 2019 - Proceedings (8883506)
Colección:Actas de congresos
Vista completa

Visitas

187
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.