Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60014
Título: | Chlorophyll-A estimation from remote sensing data of sea surface temperature and aerosol optical thickness through a shallow neural network | Autores/as: | Rodríguez Esparragón, Dionisio Marrero Betancort, Nerea Marcello, Javier Hernandez-Leon, Santiago |
Clasificación UNESCO: | 250616 Teledetección (Geología) 251001 Oceanografía biológica |
Palabras clave: | Ocean temperature Neural networks Sea surface Temperature sensors Time series analysis, et al. |
Fecha de publicación: | 2019 | Proyectos: | Análisis de Series Temporales de Parámetros Atmosféricos de Teledetección Por | Conferencia: | 2019 International Conference on Engineering Applications, ICEA 2019 | Resumen: | The oceans cover most of the Earth surface, being therefore essential elements of the environmental balance of our planet. In this sense, the prediction of global change scenarios that may affect them is an issue of high scientific and social relevance. One of the elements that indicates the quality of the water is the concentration of Chlorophyll-a. It is well known that Chlorophyll-a is related to the sea surface temperature and other variables such as the presence of nutrients and wind. All of them have been monitored with remote sensing satellites for more than a decade ago. Thus, researchers have available temporary series of these data. In this work, the prediction of Chlorophyll-a concentration is addressed from data on sea surface temperature and the aerosol optical thickness. For this, a shallow neuronal network is designed and trained, whose performance is contrasted with other approaches. The results show that the tested methodology can be used to model predictors with the discussed climate variables. | URI: | http://hdl.handle.net/10553/60014 | DOI: | 10.1109/CEAP.2019.8883506 | Fuente: | 2019 International Conference on Engineering Applications, ICEA 2019 - Proceedings (8883506) |
Colección: | Actas de congresos |
Visitas
187
actualizado el 30-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.